221 research outputs found

    A Capillary-Based Microfluidic System for Immunoaffinity Separations in Biological Matrices

    Get PDF
    The analysis of biological samples in clinical or research settings often requires measurement of analytes from complex and limited matrices. Immunoaffinity separations in miniaturized formats offer selective isolation of target analytes with minimal reagent consumption and reduced analysis times. A prototype capillary-based microfluidic system has been developed for immunoaffinity separations in biological matrices with laser-induced fluorescence detection of labeled antigens or antibodies. The laboratory-constructed device was assembled from two micro syringe pumps, a microchip mixer, a micro-injector, a diode laser with fused-silica capillary flow cell, and a separation capillary column. The columns were prepared from polymer tubing and packed under negative pressure with a stationary phase that consisted of biotinylated antibodies attached to streptavidin-silica beads. A custom software program controlled the syringe pumps to perform step gradient elution and collected the signal as chromatograms. The system performance was evaluated with flow accuracy, mixer proportioning, pH gradient generation, and assessment of detectability. A direct labeling/direct capture immunoaffinity separation of C-reactive protein (CRP) was demonstrated in simulated serum. CRP, a biomarker of inflammation and cardiovascular disease risk assessment, was fluorescently labeled in a one-step reaction and directly injected into the system. A quadratic calibration model was selected and precision and accuracy were reported. Parathyroid hormone was also analyzed by the direct capture approach, but displayed nonspecific binding of human plasma matrix components that limited the useful assay range. Capillary sandwich assays of CRP in human serum and cerebrospinal fluid were performed using both capture and detection antibodies. The detection antibody was labeled and purified offline to minimize signal from labeled matrix components. Four parameter logistic functions were used to model the data and precision and accuracy were evaluated. During the study, 250 nL injection volumes 2.0 µL/min flow rates were employed, minimizing sample and reagent consumption. The microfluidic system was capable of separating antigens from biological matrices and is potentially portable for patient point-of-care settings. Additionally, the flexible design of the separation capillary allows for the analysis of different clinical markers by changing the antibodies and the low assay volume requirements could lead to less invasive patient sampling techniques.LabVIEW version 7 or later is required to open the attached files

    Strength gain at little cost? Feasibility of \u27low load\u27 eccentric cycling as a tool for strength gain in sedentary men

    Get PDF
    Symptomatic reporting is a common issue in exercise rehabilitation. When traditional concentric aerobic exercise is used as an exercise stimulus, dyspnoea and fatigue are often reported by elderly5 and by cohorts with cardiorespiratory pathology3. Among the unique attributes of eccentric aerobic exercise is lower metabolic and cardiovascular demand for a given workload 1 ,2. This makes eccentric aerobic exercise more suitable for long-term adherence in rehabilitation. Although, extremely \u27high load\u27 eccentric cycling interventions have shown improvements in strength measurements4, no \u27low load\u27 eccentric cycling studies have been performed to determine if strength adaptations are feasible. Therefore, this study determined if \u27low load\u27 eccentric cycling can stimulate strength adaptations

    Ye Ink Stand

    Get PDF
    Letters from fans in Mythril #

    Identification and Characterization of Bovine Pol III Promoters to Express a Short-Hairpin RNA

    Get PDF
    The use of molecular biology as a means to advance agriculture has proven beneficial in many fields. However, the development lentiviral vectors that utilize a livestock promoter to express short hairpin RNA (shRNA) has been limited to date. The goal of this research project was to develop and characterize lentiviral bovine Pol III mir30 shRNA expression vectors for future use in livestock research. The bovine Pol III promoter (7sk, U6-2, or H1) was inserted directly upstream of a mir30 shRNA expression sequence in the lentiviral vector pNef-GT. A transient luciferase knockdown assay in human embryonic kidney (HEK) 293T cells was used to compare the functionality of these vectors. The bPol III mir30 shRNA expression vector was co-transfected with the pGL3 luciferase expression vector and the renilla expression vector pLB at a ratio of 5:10:1 respectively. The vectors were allowed 48 hrs to produce their respective products before luciferase activity was measured with the Stop-n-Glo Assay (Promega). Each bPol III promoter was able to express a functional shRNA resulting in a reduction of luciferase activity greater than 68 percent. The bH1 and bU6-2 Luc shRNA vectors were the most effective vectors when transfected with >76 percent (p-value <0.05) reduced luciferase activity. To confirm that these promoters were functional after integration into a bovine genome, recombinant lentivirus was made from these vectors. These particles were then used to transduce a bovine kidney (MDBK) cell line that expressed luciferase. After transduction, transgenic cells were selected by the addition of the antibiotic, Geneticin to the culture media until a population of 100 percent bPol III expression cells were observed for two passages and luciferase activity was measured. The 7sk promoter was the most effective bPol III promoter that reduced luciferase activity in these cells by 72 percent (p-value <0.05), while the bU6-2 and bH1 were moderately effective at reducing luciferase levels (37 percent, 46 percent respectively). These experiments were the first to quantify the bovine Pol III promoter function after integration into a bovine genome. While variability was observed, for livestock based research, the b7sk lentiviral vector appears to be the best choice to express a shRNA from the genome of a bovine genome

    Ordination as a tool to characterize soil particle size distribution, applied to an elevation gradient at the north slope of the Middle Kunlun Mountains

    Get PDF
    Soil particle-size distribution (PSD) is one of the most fundamental physical attributes of soil due to its strong influence on other soil properties related to water movement, productivity, and soil erosion. Characterizing variation of PSD in soils is an important issue in environmental research. Using ordination methods to characterize particle size distributions (PSDs) on a small-scale is very limited. In this paper, we selected the Cele River Basin on the north slope of the Middle Kunlun Mountains as a study area and investigated vegetation and soil conditions from 1960 to 4070 m a.s.l. Soil particle-size distributions obtained by laser diffractometry were used as a source data matrix. The Canonical Correspondence Analysis (CCA) ordination was applied to analyse the variation characteristics of PSDs and the relationships between PSDs and environmental factors. Moreover, single fractal dimensions were calculated to support the interpretation of the ordination results. Our results indicate that a differentiation of 16 particle fractions can sufficiently characterize the PSDs in CCA biplots. Elevation has the greatest effect on PSDs: the soil fine fractions increase gradually with increasing elevation. In addition, soil pH, water and total salt content are significantly correlated with PSDs. CCA ordination biplots show that soil and vegetation patterns correspond with one another, indicating a tight link between soil PSDs and plant communities on a small scale in arid regions. The results of fractal dimensions analysis were rather similar to CCA ordination results, but they yielded less detailed information about PSDs. Our study shows that ordination methods can be beneficially used in research into PSDs and, combined with fractal measures, can provide comprehensive information about PSDs. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved

    KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data

    Get PDF
    We present measurements of parameters of the 3-dimensional power spectrum of galaxy clustering from 222 square degrees of early imaging data in the Sloan Digital Sky Survey. The projected galaxy distribution on the sky is expanded over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise ratio in our analysis. A maximum likelihood analysis is used to estimate parameters that set the shape and amplitude of the 3-dimensional power spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/- 0.06 (statistical errors only), for a flat Universe with a cosmological constant. We demonstrate that our measurements contain signal from scales at or beyond the peak of the 3D power spectrum. We discuss how the results scale with systematic uncertainties, like the radial selection function. We find that the central values satisfy the analytically estimated scaling relation. We have also explored the effects of evolutionary corrections, various truncations of the KL basis, seeing, sample size and limiting magnitude. We find that the impact of most of these uncertainties stay within the 2-sigma uncertainties of our fiducial result.Comment: Fig 1 postscript problem correcte

    Galaxy Clustering in Early SDSS Redshift Data

    Get PDF
    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r < 10 Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and M_*+1.5 have real-space correlation functions that are parallel power laws of slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h, and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio

    The Angular Correlation Function of Galaxies from Early SDSS Data

    Get PDF
    The Sloan Digital Sky Survey is one of the first multicolor photometric and spectroscopic surveys designed to measure the statistical properties of galaxies within the local Universe. In this Letter we present some of the initial results on the angular 2-point correlation function measured from the early SDSS galaxy data. The form of the correlation function, over the magnitude interval 18<r*<22, is shown to be consistent with results from existing wide-field, photographic-based surveys and narrower CCD galaxy surveys. On scales between 1 arcminute and 1 degree the correlation function is well described by a power-law with an exponent of ~ -0.7. The amplitude of the correlation function, within this angular interval, decreases with fainter magnitudes in good agreement with analyses from existing galaxy surveys. There is a characteristic break in the correlation function on scales of approximately 1-2 degrees. On small scales, < 1', the SDSS correlation function does not appear to be consistent with the power-law form fitted to the 1'< theta <0.5 deg data. With a data set that is less than 2% of the full SDSS survey area, we have obtained high precision measurements of the power-law angular correlation function on angular scales 1' < theta < 1 deg, which are robust to systematic uncertainties. Because of the limited area and the highly correlated nature of the error covariance matrix, these initial results do not yet provide a definitive characterization of departures from the power-law form at smaller and larger angles. In the near future, however, the area of the SDSS imaging survey will be sufficient to allow detailed analysis of the small and large scale regimes, measurements of higher-order correlations, and studies of angular clustering as a function of redshift and galaxy type
    • …
    corecore