4,602 research outputs found

    Interpreting doubly special relativity as a modified theory of measurement

    Full text link
    In this article we develop a physical interpretation for the deformed (doubly) special relativity theories (DSRs), based on a modification of the theory of measurement in special relativity. We suggest that it is useful to regard the DSRs as reflecting the manner in which quantum gravity effects induce Planck-suppressed distortions in the measurement of the "true" energy and momentum. This interpretation provides a framework for the DSRs that is manifestly consistent, non-trivial, and in principle falsifiable. However, it does so at the cost of demoting such theories from the level of "fundamental" physics to the level of phenomenological models -- models that should in principle be derivable from whatever theory of quantum gravity one ultimately chooses to adopt.Comment: 18 pages, plain LaTeX2

    Entropy of gravitationally collapsing matter in FRW universe models

    Full text link
    We look at a gas of dust and investigate how its entropy evolves with time under a spherically symmetric gravitational collapse. We treat the problem perturbatively and find that the classical thermodynamic entropy does actually increase to first order when one allows for gravitational potential energy to be transferred to thermal energy during the collapse. Thus, in this situation there is no need to resort to the introduction of an intrinsic gravitational entropy in order to satisfy the second law of thermodynamics.Comment: 9 pages, 4 figures. Major changes from previous version. We consider only thermodynamic entropy in this version. Published in PR

    Spacetime structure of static solutions in Gauss-Bonnet gravity: charged case

    Full text link
    We have studied spacetime structures of static solutions in the nn-dimensional Einstein-Gauss-Bonnet-Maxwell-Λ\Lambda system. Especially we focus on effects of the Maxwell charge. We assume that the Gauss-Bonnet coefficient α\alpha is non-negative and 4α~/214{\tilde \alpha}/\ell^2\leq 1 in order to define the relevant vacuum state. Solutions have the (n2)(n-2)-dimensional Euclidean sub-manifold whose curvature is k=1, 0k=1,~0, or -1. In Gauss-Bonnet gravity, solutions are classified into plus and minus branches. In the plus branch all solutions have the same asymptotic structure as those in general relativity with a negative cosmological constant. The charge affects a central region of the spacetime. A branch singularity appears at the finite radius r=rb>0r=r_b>0 for any mass parameter. There the Kretschmann invariant behaves as O((rrb)3)O((r-r_b)^{-3}), which is much milder than divergent behavior of the central singularity in general relativity O(r4(n2))O(r^{-4(n-2)}). Some charged black hole solutions have no inner horizon in Gauss-Bonnet gravity. Although there is a maximum mass for black hole solutions in the plus branch for k=1k=-1 in the neutral case, no such maximum exists in the charged case. The solutions in the plus branch with k=1k=-1 and n6n\geq6 have an "inner" black hole, and inner and the "outer" black hole horizons. Considering the evolution of black holes, we briefly discuss a classical discontinuous transition from one black hole spacetime to another.Comment: 20 pages, 10 figure

    Manifest superconformal covariance in six-dimensional (2,0) theory

    Full text link
    A superconformal generalization of Dirac's formalism for manifest conformal covariance is presented and applied to the free (2,0) tensor multiplet field theory in six dimensions. A graded symmetric superfield, defined on a supercone in a higher-dimensional superspace is introduced. This superfield transforms linearly under the transformations of the supergroup OSp(8*|4), which is the superconformal group of the six-dimensional (2,0) theory. We find the relationship between the new superfield and the conventional (2,0) superfields in six dimensions and show that the implied superconformal transformation laws are correct. Finally, we present a manifestly conformally covariant constraint on the supercone, which reduces to the ordinary differential constraint for the superfields in the six-dimensional space-time.Comment: 12 pages, LaTeX. v2: minor clarification adde

    Supersymmetric Yang-Mills and Supergravity Amplitudes at One Loop

    Full text link
    By applying the known expressions for SYM and SUGRA tree amplitudes, we write generating functions for the NNMHV box coefficients of SYM as well as the MHV, NMHV, and NNMHV box coefficients for SUGRA. The all-multiplicity generating functions utilize covariant, on-shell superspace whereby the contribution from arbitrary external states in the supermultiplet can be extracted by Grassmann operators. In support of the relation between dual Wilson loops and SYM scattering amplitudes at weak coupling, the SYM amplitudes are presented in a manifestly dual superconformal form. We introduce ordered box coefficients for calculating SUGRA quadruple cuts and prove that ordered coefficients generate physical cut amplitudes after summing over permutations of the external legs. The ordered box coefficients are produced by sewing ordered subamplitudes, previously used in applying on-shell recursion relations at tree level. We describe our verification of the results against the literature, and a formula for extracting the contributions from external gluons or gravitons to NNMHV superamplitudes is presented.Comment: 46 pages, 2 figures, additional references and clarifications include

    Spin-Raising Operators and Spin-3/2 Potentials in Quantum Cosmology

    Get PDF
    Local boundary conditions involving field strengths and the normal to the boundary, originally studied in anti-de Sitter space-time, have been recently considered in one-loop quantum cosmology. This paper derives the conditions under which spin-raising operators preserve these local boundary conditions on a 3-sphere for fields of spin 0,1/2,1,3/2 and 2. Moreover, the two-component spinor analysis of the four potentials of the totally symmetric and independent field strengths for spin 3/2 is applied to the case of a 3-sphere boundary. It is shown that such boundary conditions can only be imposed in a flat Euclidean background, for which the gauge freedom in the choice of the potentials remains.Comment: 13 pages, plain-tex, recently appearing in Classical and Quantum Gravity, volume 11, April 1994, pages 897-903. Apologies for the delay in circulating the file, due to technical problems now fixe

    Linearized gravity and gauge conditions

    Get PDF
    In this paper we consider the field equations for linearized gravity and other integer spin fields on the Kerr spacetime, and more generally on spacetimes of Petrov type D. We give a derivation, using the GHP formalism, of decoupled field equations for the linearized Weyl scalars for all spin weights and identify the gauge source functions occuring in these. For the spin weight 0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a generalization of the Regge-Wheeler equation. Specializing to the Schwarzschild case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly from the equation for the spin 0 scalar.Comment: 24 pages, corresponds to published versio

    Leptons, quarks, and their antiparticles from a phase-space perspective

    Full text link
    It is argued that antiparticles may be interpreted in macroscopic terms without explicitly using the concept of time and its reversal. The appropriate framework is that of nonrelativistic phase space. It is recalled that a quantum version of this approach leads also, alongside the appearance of antiparticles, to the emergence of `internal' quantum numbers identifiable with weak isospin, weak hypercharge and colour, and to the derivation of the Gell-Mann-Nishijima relation, while simultaneously offering a preonless interpretation of the Harari-Shupe rishon model. Furthermore, it is shown that - under the assumption of the additivity of canonical momenta - the approach entails the emergence of string-like structures resembling mesons and baryons, thus providing a different starting point for the discussion of quark unobservability.Comment: Talk given at Fifth Int. Workshop DICE2010 Space-Time-Matter, Castiglioncello, Italy, September 13-17, 201

    Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    Full text link
    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in nn-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as, the Gauss-Bonnet versions of the Bonnor-Vaidya(de Sitter/anti-de Sitter) solution, a global monopole and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditions on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics

    The effect of Pressure in Higher Dimensional Quasi-Spherical Gravitational Collapse

    Get PDF
    We study gravitational collapse in higher dimensional quasi-spherical Szekeres space-time for matter with anisotropic pressure. Both local and global visibility of central curvature singularity has been studied and it is found that with proper choice of initial data it is possible to show the validity of CCC for six and higher dimensions. Also the role of pressure in the collapsing process has been discussed.Comment: 11 pages, 6 figures, RevTeX styl
    corecore