2,209 research outputs found

    Weak Cosmic Censorship: As Strong as Ever

    Full text link
    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.Comment: 4 page

    The frictional Schr\"odinger-Newton equation in models of wave function collapse

    Get PDF
    Replacing the Newtonian coupling G by -iG, the Schrodinger-Newton equation becomes ``frictional''. Instead of the reversible Schrodinger-Newton equation, we advocate its frictional version to generate the set of pointer states for macroscopic quantum bodies.Comment: 6pp LaTeX for J.Phys.Conf.Ser.+2 figs. Talk given at the Int. Workshop DICE2006 "Quantum Mechanics between Decoherence and Determinism: new aspects from particle physics to cosmology" Piombino, Sept 11-15, 200

    Linearized gravity and gauge conditions

    Get PDF
    In this paper we consider the field equations for linearized gravity and other integer spin fields on the Kerr spacetime, and more generally on spacetimes of Petrov type D. We give a derivation, using the GHP formalism, of decoupled field equations for the linearized Weyl scalars for all spin weights and identify the gauge source functions occuring in these. For the spin weight 0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a generalization of the Regge-Wheeler equation. Specializing to the Schwarzschild case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly from the equation for the spin 0 scalar.Comment: 24 pages, corresponds to published versio

    On trapped surface formation in gravitational collapse II

    Full text link
    Further to our consideration on trapped surfaces in gravitational collapse, where pressures were allowed to be negative while satisfying weak energy condition to avoid trapped surface formation, we discuss here several other attempts of similar nature in this direction. Certain astrophysical aspects are pointed out towards examining the physical realization of such a possibility in realistic gravitational collapse

    Naked Singularity of the Vaidya-deSitter Spacetime and Cosmic Censorship Hypothesis

    Full text link
    We investigate the formation of a locally naked singularity in the collapse of radiation shells in an expanding Vaidya-deSitter background. This is achieved by considering the behaviour of non-spacelike and radial geodesics originating at the singularity. A specific condition is determined for the existence of radially outgoing, null geodesics originating at the singularity which, when this condition is satisfied, becomes locally naked. This condition turns out to be the same as that in the collapse of radiation shells in an asymptotically flat background. Therefore, we have, at least for the case considered here, established that the asymptotic flatness of the spacetime is not essential for the development of a locally naked singularity. Our result then unequivocally supports the view that no special role be given to asymptotic observers (or, for that matter, any set of observers) in the formulation of the Cosmic Censorship Hypothesis.Comment: submitted Oct. 1997, Revised Version, to be published Gen. Rel. Grav., Latex file, 9 page

    Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation

    Full text link
    We discuss the issue of radiation extraction in asymptotically flat space-times within the framework of conformal methods for numerical relativity. Our aim is to show that there exists a well defined and accurate extraction procedure which mimics the physical measurement process. It operates entirely intrisically within \scri^+ so that there is no further approximation necessary apart from the basic assumption that the arena be an asymptotically flat space-time. We define the notion of a detector at infinity by idealising local observers in Minkowski space. A detailed discussion is presented for Maxwell fields and the generalisation to linearised and full gravity is performed by way of the similar structure of the asymptotic fields.Comment: LaTeX2e,13 pages,2 figure

    A Maximally Symmetric Vector Propagator

    Get PDF
    We derive the propagator for a massive vector field on a de Sitter background of arbitrary dimension. This propagator is de Sitter invariant and possesses the proper flat spacetime and massless limits. Moreover, the retarded Green's function inferred from it produces the correct classical response to a test source. Our result is expressed in a tensor basis which is convenient for performing quantum field theory computations using dimensional regularization.Comment: 21 pages, no figures, uses LaTeX 2 epsilon, version 2 has an error in eqn (86) corrected and an updated reference lis

    Clifford-Finsler Algebroids and Nonholonomic Einstein-Dirac Structures

    Full text link
    We propose a new framework for constructing geometric and physical models on nonholonomic manifolds provided both with Clifford -- Lie algebroid symmetry and nonlinear connection structure. Explicit parametrizations of generic off-diagonal metrics and linear and nonlinear connections define different types of Finsler, Lagrange and/or Riemann-Cartan spaces. A generalization to spinor fields and Dirac operators on nonholonomic manifolds motivates the theory of Clifford algebroids defined as Clifford bundles, in general, enabled with nonintegrable distributions defining the nonlinear connection. In this work, we elaborate the algebroid spinor differential geometry and formulate the (scalar, Proca, graviton, spinor and gauge) field equations on Lie algebroids. The paper communicates new developments in geometrical formulation of physical theories and this approach is grounded on a number of previous examples when exact solutions with generic off-diagonal metrics and generalized symmetries in modern gravity define nonholonomic spacetime manifolds with uncompactified extra dimensions.Comment: The manuscript was substantially modified following recommendations of JMP referee. The former Chapter 2 and Appendix were elliminated. The Introduction and Conclusion sections were modifie

    Accretion with back reaction

    Full text link
    We calculate analytically a back reaction of the stationary spherical accretion flow near the event horizon and near the inner Cauchy horizon of the charged black hole. It is shown that corresponding back-reaction corrections to the black hole metric depend only on the fluid accretion rate and diverge in the case of an extremely charged black hole. In result, the test fluid approximation for stationary accretion is violated for extreme black holes. This behavior of the accreting black hole is in accordance with the third law of black hole thermodynamics, forbidding the practical attainability of the extreme state.Comment: 5 pages, 2 figures; new figure and references adde

    Note on (conformally) semi-symmetric spacetimes

    Full text link
    We provide a simple proof that conformally semi-symmetric spacetimes are actually semi-symmetric. We also present a complete refined classification of the semi-symmetric spacetimes.Comment: 5 pages, no figure
    corecore