24 research outputs found

    Optical Polarimetry, High–Resolution Spectroscopy and IR Analysis of the Chamaeleon I Dark Cloud

    Get PDF
    We present optical polarimetry and high resolution spectroscopy of a sample of stars toward the Chamaeleon I dark cloud. We use our polarimetry which includes 33 stars to study the wavelength dependence of the degree and position angle of polarization.From our data we found, by interpretation of the various correlations between the polarimetry, photometry and IRAS fluxes, the following:the probable presence of shocked molecular gas; a warm molecular CH component; small dust grains at the edges of the cloud, and larger grains in the central parts, which are causing the polarization.Our results provide a consistent picture of the gas and dust content in the Cha I region, where larger grains, responsible of the starlight polarization, exist in the center of the cloud, surrounded by envelopes of warmer molecular and atomic material

    Keck Echellette Spectrograph and Imager Observations of Metal-poor Damped Lyα Systems

    Get PDF
    We present the first results from a survey of SDSS quasars selected for strong H I damped Lyα (DLA) absorption with corresponding low equivalent width absorption from strong low-ion transitions (e.g., C II λ1334 and Si II λ1260). These metal-poor DLA candidates were selected from the SDSS fifth release quasar spectroscopic database, and comprise a large new sample for probing low-metallicity galaxies. Medium-resolution echellette spectra from the Keck Echellette Spectrograph and Imager spectrograph for an initial sample of 35 systems were obtained to explore the metal-poor tail of the DLA distribution and to investigate the nucleosynthetic patterns at these metallicities. We have estimated saturation corrections for the moderately underresolved spectra, and systems with very narrow Doppler parameters (b ≀ 5 km s^(–1)) will likely have underestimated abundances. For those systems with Doppler parameters b > 5 km s^(–1), we have measured low-metallicity DLA gas with [X/H] < –2.4 for at least one of C, O, Si, or Fe. Assuming non-saturated components, we estimate that several DLA systems have [X/H] < –2.8, including five DLA systems with both low equivalent widths and low metallicity in transitions of both C II and O I. All of the measured DLA metallicities, however, exceed or are consistent with a metallicity of at least 1/1000 of solar, regardless of the effects of saturation in our spectra. Our results indicate that the metal-poor tail of galaxies at z ~ 3 drops exponentially at [X/H] ≟ –3. If the distribution of metallicity is Gaussian, the probability of identifying interstellar medium gas with lower abundance is extremely small, and our results suggest that DLA systems with [X/H] < –4.0 are extremely rare, and could comprise only 8 × 10^(–7) of DLA systems. The relative abundances of species within these low-metallicity DLA systems are compared with stellar nucleosynthesis models, and are consistent with stars having masses of 30 M_⊙ < M * < 100 M_⊙. The observed ratio of [C/O] for values of [O/H] < –2.5 exceeds values seen in moderate metallicity DLA systems, and also exceeds theoretical nucleosynthesis predictions for higher mass Population III stars. We also have observed a correlation between the column density N(C IV) with [Si/H] metallicity, suggestive of a trend between mass of the DLA system and its metallicity

    CAMERA: a compact, automated, laser adaptive optics system for small aperture telescopes

    Get PDF
    CAMERA is an autonomous laser guide star adaptive optics system designed for small aperture telescopes. This system is intended to be mounted permanently on such a telescope to provide large amounts of flexibly scheduled observing time, delivering high angular resolution imagery in the visible and near infrared. The design employs a Shack Hartmann wavefront sensor, a 12x12 actuator MEMS device for high order wavefront compensation, and a solid state 355nm ND:YAG laser to generate a guide star. Commercial CCD and InGaAs detectors provide coverage in the visible and near infrared. CAMERA operates by selecting targets from a queue populated by users and executing these observations autonomously. This robotic system is targeted towards applications that are diffcult to address using classical observing strategies: surveys of very large target lists, recurrently scheduled observations, and rapid response followup of transient objects. This system has been designed and costed, and a lab testbed has been developed to evaluate key components and validate autonomous operations

    CAMERA: a compact, automated, laser adaptive optics system for small aperture telescopes

    Get PDF
    CAMERA is an autonomous laser guide star adaptive optics system designed for small aperture telescopes. This system is intended to be mounted permanently on such a telescope to provide large amounts of flexibly scheduled observing time, delivering high angular resolution imagery in the visible and near infrared. The design employs a Shack Hartmann wavefront sensor, a 12x12 actuator MEMS device for high order wavefront compensation, and a solid state 355nm ND:YAG laser to generate a guide star. Commercial CCD and InGaAs detectors provide coverage in the visible and near infrared. CAMERA operates by selecting targets from a queue populated by users and executing these observations autonomously. This robotic system is targeted towards applications that are diffcult to address using classical observing strategies: surveys of very large target lists, recurrently scheduled observations, and rapid response followup of transient objects. This system has been designed and costed, and a lab testbed has been developed to evaluate key components and validate autonomous operations

    Constraints on Circumstellar Material around the Type Ia Supernova 2007af

    Get PDF
    Patat et al. recently inferred the existence of circumstellar material around a normal Type Ia supernova (SN Ia) for the first time, finding time-variable Na I D absorption lines in the spectrum of SN 2006X. We present high-resolution spectroscopy of the bright SN Ia 2007af at three epochs and search for variability in any of the Na D absorption components. Over the time range from 4 days before to 24 days after maximum light, we find that the host-galaxy Na D lines appear to be of interstellar rather than circumstellar origin and do not vary down to the level of 18 mÅ (column density of 2 × 10^(11) cm^(-2)). We limit any circumstellar absorption lines to be weaker than ~10 mÅ (6 × 10^(10) cm^(-2)). For the case of material distributed in spherically symmetric shells of radius ~10^(16) cm surrounding the progenitor system, we place an upper limit on the shell mass of ~(3 × 10^(-8))/X M_⊙, where X is the Na ionization fraction. We also show that SN 2007af is a photometrically and spectroscopically normal SN Ia. Assuming that the variable Na D lines in SN 2006X came from circumstellar matter, we therefore conclude that either there is a preferred geometry for the detection of variable absorption components in SNe Ia, or SN 2007af and SN 2006X had different types of progenitor systems

    A comprehensive study of GRB 070125, a most energetic gamma ray burst

    Get PDF
    We present a comprehensive multiwavelength analysis of the bright, long duration gamma-ray burst GRB 070125, comprised of observations in γ\gamma-ray, X-ray, optical, millimeter and centimeter wavebands. Simultaneous fits to the optical and X-ray light curves favor a break on day 3.78, which we interpret as the jet break from a collimated outflow. Independent fits to optical and X-ray bands give similar results in the optical bands but shift the jet break to around day 10 in the X-ray light curve. We show that for the physical parameters derived for GRB 070125, inverse Compton scattering effects are important throughout the afterglow evolution. While inverse Compton scattering does not affect radio and optical bands, it may be a promising candidate to delay the jet break in the X-ray band. Radio light curves show rapid flux variations, which are interpreted as due to interstellar scintillation, and are used to derive an upper limit of 2.4×10172.4 \times 10^{17} cm on the radius of the fireball in the lateral expansion phase of the jet. Radio light curves and spectra suggest a high synchrotron self absorption frequency indicative of the afterglow shock wave moving in a dense medium. Our broadband modeling favors a constant density profile for the circumburst medium over a wind-like profile (R−2R^{-2}). However, keeping in mind the uncertainty of the parameters, it is difficult to unambiguously distinguish between the two density profiles. Our broadband fits suggest that \event is a burst with high radiative efficiency (>60> 60 %).Comment: 50 pages, 33 figures, sty file included, Appeared in 20 Aug 2008 edition of Astrophysical Journa
    corecore