13 research outputs found

    Assessment of the allergic potential of food protein extracts and proteins on oral application using the brown Norway rat model.

    Get PDF
    The need for widely accepted and validated animal models to test the potential allergenicity and potency of novel (biotechnology-derived) proteins has become an important issue for their safety evaluation. In this article, we summarize the results of the development of an oral sensitization protocol for food proteins in the rat. Young Brown Norway rats were exposed to either various purified allergenic proteins (e.g., ovalbumin, partly purified), a whole food (cow's milk), or total protein extracts (hen's egg white, peanut) by daily gavage dosing during 42 days without the use of an adjuvant. The results showed that Brown Norway rats can be sensitized orally to the various allergenic food proteins tested, resulting in antigen-specific immunoglobulin (Ig) G and IgE responses, without the use of adjuvants. Animals orally exposed to cow's milk or total protein extracts of egg white also developed specific IgE and IgG antibodies that recognized the same proteins compared with antibodies from patients allergic to egg white or cow's milk. We also studied local and systemic immune-mediated effects. In ovalbumin-sensitized rats, some clinical symptoms of food allergy were studied upon an oral challenge with ovalbumin. The results demonstrated that gut permeability was increased and that in some animals breathing frequency and systolic blood pressure were temporarily decreased. The results obtained show that the Brown Norway rat provides a suitable animal model for food allergy research and for the study of relative allergenicity of existing and novel food proteins

    Lupine Allergy: Not Simply Cross-Reactivity with Peanut or Soy

    Get PDF
    Background: Reports of lupine allergy are increasing as its use in food products increases. Lupine allergy might be the consequence of cross-reactivity after sensitization to peanut or other legumes or de novo sensitization. Lupine allergens have not been completely characterized. Objectives: We sought to identify allergens associated with lupine allergy, evaluate potential cross-reactivity with peanut, and determine eliciting doses (EDs) for lupine allergy by using double-blind, placebo-controlled food challenges. Methods: Six patients with a history of allergic reactions to lupine flour were evaluated by using skin prick tests, CAP tests, and double-blind, placebo-controlled food challenges. Three of these patients were also allergic to peanut. Lupine allergens were characterized by means of IgE immunoblotting and peptide sequencing. Results: In all 6 patients the ED for lupine flour was 3 mg or less for subjective symptoms and 300 mg or more for objective symptoms. The low ED and moderate-to-severe historical symptoms indicate significant allergenicity of lupine flour. Two patients allergic to lupine but not to peanut displayed IgE binding predominantly to approximately 66-kd proteins and weak binding to 14- and 24-kd proteins, whereas patients with peanut allergy and lupine allergy showed weak binding to lupine proteins of about 14 to 21 or 66 kd. Inhibition of binding was primarily species specific. Conclusion: Lupine allergy can occur either separately or together with peanut allergy, as demonstrated by 3 patients who are cosensitized to peanut and lupine. Clinical implications: Lupine flour is allergenic and potentially cross-reactive with peanut allergen, thus posing some risk if used as a replacement for soy flour

    The protein structure determines the sensitizing capacity of Brazil nut 2S albumin (\u3ci\u3eBer e1\u3c/i\u3e) in a rat food allergy model

    Get PDF
    It is not exactly known why certain food proteins are more likely to sensitize. One of the characteristics of most food allergens is that they are stable to the acidic and proteolytic conditions in the digestive tract. This property is thought to be a risk factor in allergic sensitization. The purpose of the present study was to investigate the contribution of the protein structure of 2S albumin (Ber e1), a major allergen from Brazil nut, on the sensitizing capacity in vivo using an oral Brown Norway rat food allergy model. Disulphide bridges of 2S albumin were reduced and alkylated resulting in loss of protein structure and an increased pepsin digestibility in vitro. Both native 2S albumin and reduced/alkylated 2S albumin were administered by daily gavage dosing (0.1 and 1 mg) to Brown Norway rats for 42 days. Intraperitoneal administration was used as a positive control. Sera were analysed by ELISA and passive cutaneous anaphylaxis. Oral exposure to native or reduced/alkylated 2S albumin resulted in specific IgG1 and IgG2a responses whereas only native 2S albumin induced specific IgE in this model, which was confirmed by passive cutaneous anaphylaxis. This study has shown that the disruption of the protein structure of Brazil nut 2S albumin decreased the sensitizing potential in a Brown Norway rat food allergy model, whereas the immunogenicity of 2S albumin remained preserved. This observation may open possibilities for developing immunotherapy for Brazil nut allergy

    How accurate and safe is the diagnosis of hazelnut allergy by means of commercial skin prick test reagents?

    No full text
    BACKGROUND: Allergy to tree nuts, like hazelnuts, ranks among the most frequently observed food allergies. These allergies can start at early childhood and are, in contrast to other food allergies, not always outgrown by the patient. Tree nut allergy is frequently associated with severe reactions. Diagnosis partially relies on in vivo testing by means of a skin prick test (SPT) using commercially available SPT reagents. METHODS: Protein and allergen composition of nine commercial SPT solutions was evaluated using standard protein detection methods and specific immunoassays for measurement of five individual allergens. Diagnostic performance was assessed by SPT in 30 hazelnut-allergic subjects, of which 15 were provocation proven. RESULTS: Protein concentrations ranged from 0.2-14 mg/ml. SDS-PAGE/silver staining revealed clear differences in protein composition. The major allergen Cor a 1 was present in all extracts but concentrations differed up to a factor 50. An allergen associated with severe symptoms, Cor a 8 (lipid transfer protein), was not detected on immunoblot in three products, and concentrations varied by more than a factor 100 as was shown by RAST inhibition. Similar observations were made for profilin, thaumatin-like protein and a not fully characterized 38-kD allergen. Ratios of individual allergens were variable among the nine extracts. SPT showed significant difference, and 6/30 patients displayed false-negative results using 3/9 products. CONCLUSION: Variability in the composition of products for the diagnosis of hazelnut allergy is extreme. Sometimes, allergens implicated in severe anaphylaxis are not detected by immunoblotting. These shortcomings in standardisation and quality control can potentially cause a false-negative diagnosis in subjects at risk of severe reactions to hazelnut

    The minipig as an alternative non-rodent model for immunogenicity testing using the TNF alpha blockers adalimumab and infliximab

    No full text
    Immunogenicity is a major issue of concern for monoclonal antibodies used in human diseases and is by default mainly determined in non-human primates (NHP), as target molecules are considered most similar in NHP compared to human. In this manuscript the predictive value of immunogenicity testing in minipigs for human safety is evaluated, as the immune system of the pig is functionally similar to that in other mammalian species. Adalimumab and infliximab (both monoclonal antibodies blocking TNF alpha) were used as model substances. Female Gottingen minipigs (4/group) were treated every other week with low (0.1 mg/kg), mid (1.0 mg/kg), or high dose (5 mg/kg) adalimumab or 5 mg/kg infliximab subcutaneous (SC) over a period of 8 weeks. After first and last dosing, pharmacokinetic analysis was performed. Anti-drug antibodies (ADAs) were measured on several time points. Furthermore, hematology, clinical chemistry, body weight, clinical signs, and histopathology of several organs were evaluated. No signs of toxicity of the treatments were observed in the limited organs and tissues collected. Eleven out of 12 minipigs treated with adalimumab elicited a detectable ADA response. Induction of ADA was correlated with decreased plasma levels of adalimumab. Infliximab clearance was comparable after first and last dose. Therefore, the presence of ADA directed to infliximab was considered highly unlikely. It was concluded that the minipig and NHP showed comparable suitability for immunogenicity prediction in humans. More studies with other biopharmaceutical products are needed to strengthen the status of the minipig as an alternative model for immunotoxicity testing including immunogenicit
    corecore