80 research outputs found

    Relationship between Exposure to Vector Bites and Antibody Responses to Mosquito Salivary Gland Extracts

    Get PDF
    Mosquito-borne diseases are major health problems worldwide. Serological responses to mosquito saliva proteins may be useful in estimating individual exposure to bites from mosquitoes transmitting these diseases. However, the relationships between the levels of these IgG responses and mosquito density as well as IgG response specificity at the genus and/or species level need to be clarified prior to develop new immunological markers to assess human/vector contact. To this end, a kinetic study of antibody levels against several mosquito salivary gland extracts from southeastern French individuals living in three areas with distinct ecological environments and, by implication, distinct Aedes caspius mosquito densities were compared using ELISA. A positive association was observed between the average levels of IgG responses against Ae. caspius salivary gland extracts and spatial Ae. caspius densities. Additionally, the average level of IgG responses increased significantly during the peak exposure to Ae. caspius at each site and returned to baseline four months later, suggesting short-lived IgG responses. The species-specificity of IgG antibody responses was determined by testing antibody responses to salivary gland extracts from Cx. pipiens, a mosquito that is present at these three sites at different density levels, and from two other Aedes species not present in the study area (Ae. aegypti and Ae. albopictus). The IgG responses observed against these mosquito salivary gland extracts contrasted with those observed against Ae. caspius salivary gland extracts, supporting the existence of species-specific serological responses. By considering different populations and densities of mosquitoes linked to environmental factors, this study shows, for the first time, that specific IgG antibody responses against Ae. caspius salivary gland extracts may be related to the seasonal and geographical variations in Ae. caspius density. Characterisation of such immunological-markers may allow the evaluation of the effectiveness of vector-control strategies or estimation of the risk of vector-borne disease transmission

    A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    Get PDF
    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation

    A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set

    Get PDF
    Premise: To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. Methods: We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76 of all genera in the order). Results: Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. Conclusions: High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events

    Pemphigus autoimmunity: Hypotheses and realities

    Get PDF
    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade

    Kaposi's sarcoma: absence of cytomegalovirus antigens

    No full text
    Using an immunohistochemical method, we could not detect cytomegalovirus antigens in the tissue of Kaposi's sarcoma but could in the cells of control sections from tissues known to be infected by that virus. Our results are consistent with the hypothesis that high antibody titers to cytomegalovirus found in patients with Kaposi's sarcoma are not due to infection of neoplastic cells by the virus, as a secondary event; our data supports the conclusions of others that exposure to cytomegalovirus may be a primary event in the pathogenesis of Kaposi's sarcoma
    corecore