497 research outputs found

    Effect of Optical Coating and Surface Treatments on Mechanical Loss in Fused Silica

    Full text link
    We report on the mechanical loss in fused silica samples with various surface treatments and compare them with samples having an optical coating. Mild surface treatments such as washing in detergent or acetone were not found to affect the mechanical loss of flame-drawn fused silica fibers stored in air. However, mechanical contact (with steel calipers) significantly increased the loss. The application of a high-reflective optical coating of the type used for the LIGO test masses was found to greatly increase the mechanical loss of commercially polished fused silica microscope slides. We discuss the implications for the noise budget of interferometers.Comment: 7 pages, 2 figures. Accepted for publication in the Proceedings of the Third Eduardo Amaldi Conference on Gravitational Waves, July 12-16, 1999. Updated version contains a correction of Eq. 3 and an estimate for the loss angle of a LIGO coating. (Neither of these revisions are included in the version published in the conference proceedings.

    Theory of a magnetic microscope with nanometer resolution

    Full text link
    We propose a theory for a type of apertureless scanning near field microscopy that is intended to allow the measurement of magnetism on a nanometer length scale. A scanning probe, for example a scanning tunneling microscope (STM) tip, is used to scan a magnetic substrate while a laser is focused on it. The electric field between the tip and substrate is enhanced in such a way that the circular polarization due to the Kerr effect, which is normally of order 0.1% is increased by up to two orders of magnitude for the case of a Ag or W tip and an Fe sample. Apart from this there is a large background of circular polarization which is non-magnetic in origin. This circular polarization is produced by light scattered from the STM tip and substrate. A detailed retarded calculation for this light-in-light-out experiment is presented.Comment: 17 pages, 8 figure

    Improved microarray gene expression profiling of virus-infected cells after removal of viral RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sensitivity and accuracy are key points when using microarrays to detect alterations in gene expression under different conditions. Critical to the acquisition of reliable results is the preparation of the RNA. In the field of virology, when analyzing the host cell's reaction to infection, the often high representation of viral RNA (vRNA) within total RNA preparations from infected cells is likely to interfere with microarray analysis. Yet, this effect has not been investigated despite the many reports that describe gene expression profiling of virus-infected cells using microarrays.</p> <p>Results</p> <p>In this study we used coronaviruses as a model to show that vRNA indeed interferes with microarray analysis, decreasing both sensitivity and accuracy. We also demonstrate that the removal of vRNA from total RNA samples, by means of virus-specific oligonucleotide capturing, significantly reduced the number of false-positive hits and increased the sensitivity of the method as tested on different array platforms.</p> <p>Conclusion</p> <p>We therefore recommend the specific removal of vRNA, or of any other abundant 'contaminating' RNAs, from total RNA samples to improve the quality and reliability of microarray analyses.</p

    Pendulum Mode Thermal Noise in Advanced Interferometers: A comparison of Fused Silica Fibers and Ribbons in the Presence of Surface Loss

    Get PDF
    The use of fused-silica ribbons as suspensions in gravitational wave interferometers can result in significant improvements in pendulum mode thermal noise. Surface loss sets a lower bound to the level of noise achievable, at what level depends on the dissipation depth and other physical parameters. For LIGO II, the high breaking strength of pristine fused silica filaments, the correct choice of ribbon aspect ratio (to minimize thermoelastic damping), and low dissipation depth combined with the other achievable parameters can reduce the pendulum mode thermal noise in a ribbon suspension well below the radiation pressure noise. Despite producing higher levels of pendulum mode thermal noise, cylindrical fiber suspensions provide an acceptable alternative for LIGO II, should unforeseen problems with ribbon suspensions arise.Comment: Submitted to Physics Letters A (Dec. 14, 1999). Resubmitted to Physics Letters A (Apr. 3, 2000) after internal (LSC) review process. PACS - 04.80.Nn, 95.55.Ym, 05.40.C

    On Metal-Insulator Transitions due to Self-Doping

    Full text link
    We investigate the influence of an unoccupied band on the transport properties of a strongly correlated electron system. For that purpose, additional orbitals are coupled to a Hubbard model via hybridization. The filling is one electron per site. Depending on the position of the additional band, both, a metal--to--insulator and an insulator--to--metal transition occur with increasing hybridization. The latter transition from a Mott insulator into a metal via ``self--doping'' was recently proposed to explain the low carrier concentration in Yb4As3\rm Yb_4As_3. We suggest a restrictive parameter regime for this transition making use of exact results in various limits. The predicted absence of the self--doping transition for nested Fermi surfaces is confirmed by means of an unrestricted Hartree--Fock approximation and an exact diagonalization study in one dimension. In the general case metal--insulator phase diagrams are obtained within the slave--boson mean--field and the alloy--analog approximation.Comment: 9 pages, Revtex, 6 postscript figure
    • …
    corecore