26 research outputs found

    Spontaneous visual exploration during locomotion in patients with phobic postural vertigo

    Get PDF
    BACKGROUND Earlier studies on stance and gait with posturographic and EMG-recordings and automatic gait analysis in patients with phobic postural vertigo (PPV) or visual height intolerance (vHI) revealed similar patterns of body stiffening with muscle co-contraction and a slow, cautious gait. Visual exploration in vHI patients was characterized by a freezing of gaze-in-space when standing and reduced horizontal eye and head movements during locomotion. OBJECTIVE Based on the findings in vHI patients, the current study was performed with a focus on visual control of locomotion in patients with PPV while walking along a crowded hospital hallway. METHODS Twelve patients with PPV and eleven controls were recruited. Participants wore a mobile infrared video eye-tracking system that continuously measured eye-in-head movements in the horizontal and vertical planes and head orientation and motion in the yaw, pitch, and roll planes. Visual exploration behavior of participants was recorded at the individually preferred speed for a total walking distance of 200 m. Gaze-in-space directions were determined by combining eye-in-head and head-in-space orientation. Walking speeds were calculated based on the trial duration and the total distance traversed. Participants were asked to rate their feelings of discomfort during the walk on a 4-point numeric rating scale. The examiners rated the crowdedness of the hospital hallway on a 4-point numeric rating scale. RESULTS The major results of visual exploration behavior in patients with PPV in comparison to healthy controls were: eye and head positions were directed more downward in the vertical plane towards the ground ahead with increased frequency of large amplitude vertical orientation movements towards the destination, the end of the ground straight ahead. The self-adjusted speed of locomotion was significantly lower in PPV. Particularly those patients that reported high levels of discomfort exhibited a specific visual exploration of their horizontal surroundings. The durations of fixating targets in the visual surroundings were significantly shorter as compared to controls. CONCLUSION Gaze control of locomotion in patients with PPV is characterized by a preferred deviation of gaze more downward and by horizontal explorations for suitable auxiliary means for potential postural support in order to prevent impending falls. These eye movements have shorter durations of fixation as compared to healthy controls and patients with vHI. Finally, the pathological alterations in eye-head coordination during locomotion correlate with a higher level of discomfort and anxiety about falling

    Formal deformations, contractions and moduli spaces of Lie algebras

    Full text link
    Jump deformations and contractions of Lie algebras are inverse concepts, but the approaches to their computations are quite different. In this paper, we contrast the two approaches, showing how to compute jump deformations from the miniversal deformation of a Lie algebra, and thus arrive at the contractions. We also compute contractions directly. We use the moduli spaces of real 3-dimensional and complex 3 and 4-dimensional Lie algebras as models for explaining a deformation theory approach to computation of contractions.Comment: 27 page

    Star products made (somewhat) easier

    Full text link
    We develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which based on Weyl symmetrically ordered operator products. By using a polydifferential representation for deformed coordinates x^j\hat x^j we are able to formulate a simple and effective iterative procedure which allowed us to calculate the fourth order star product (and may be extended to the fifth order at the expense of tedious but otherwise straightforward calculations). Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.Comment: 20 pages, v2, v3: comments and references adde

    On operad structures of moduli spaces and string theory

    Full text link
    Recent algebraic structures of string theory, including homotopy Lie algebras, gravity algebras and Batalin-Vilkovisky algebras, are deduced from the topology of the moduli spaces of punctured Riemann spheres. The principal reason for these structures to appear is as simple as the following. A conformal field theory is an algebra over the operad of punctured Riemann surfaces, this operad gives rise to certain standard operads governing the three kinds of algebras, and that yields the structures of such algebras on the (physical) state space naturally.Comment: 33 pages (An elaboration of minimal area metrics and new references are added

    Introduction to Integral Discriminants

    Full text link
    The simplest partition function, associated with homogeneous symmetric forms S of degree r in n variables, is integral discriminant J_{n|r}(S) = \int e^{-S(x_1 ... x_n)} dx_1 ... dx_n. Actually, S-dependence remains the same if e^{-S} in the integrand is substituted by arbitrary function f(S), i.e. integral discriminant is a characteristic of the form S itself, and not of the averaging procedure. The aim of the present paper is to calculate J_{n|r} in a number of non-Gaussian cases. Using Ward identities -- linear differential equations, satisfied by integral discriminants -- we calculate J_{2|3}, J_{2|4}, J_{2|5} and J_{3|3}. In all these examples, integral discriminant appears to be a generalized hypergeometric function. It depends on several SL(n) invariants of S, with essential singularities controlled by the ordinary algebraic discriminant of S.Comment: 36 pages, 19 figure

    The OSCAR-MP consensus criteria for quality assessment of retinal optical coherence tomography angiography

    Get PDF
    BACKGROUND AND OBJECTIVES: Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. METHODS: To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. RESULTS: We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (? 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (? 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. DISCUSSION: We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies

    An immunodominant NP105-113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease.

    Get PDF
    Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265Funder: Chinese Academy of Medical Sciences (CAMS); doi: https://doi.org/10.13039/501100005150Funder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19

    Restricted cohomology of modular Witt algebras

    No full text
    corecore