15 research outputs found

    A Secure and Privacy-Aware Smart Health System with Secret Key Leakage Resilience

    No full text
    With the development of the smart health (s-health), data security and patient privacy are becoming more and more important. However, some traditional cryptographic schemes can not guarantee data security and patient privacy under various forms of leakage attacks. To prevent the adversary from capturing the part of private keys by leakage attacks, we propose a secure leakage-resilient s-health system which realizes privacy protection and the safe transmission of medical information in the case of leakage attacks. The key technique is a promising public key cryptographic primitive called leakage-resilient anonymous Hierarchical Identity-Based Encryption. Our construction is proved to be secure against chosen plaintext attacks in the standard model under the Diffie-Hellman exponent assumption and decisional linear assumption. We also blind the public parameters and ciphertexts by using double exponent technique to achieve the recipient anonymity. Finally, the performance analysis shows the practicability of our scheme, and the leakage rate of the private key approximates to 1/6

    Case Report: A Synonymous Mutation in NF1 Located at the Non-canonical Splicing Site Leading to Exon 45 Skipping

    Get PDF
    Synonymous mutations are generally considered non-pathogenic because it did not alter the amino acids of the encoded protein. Publications of the associations between synonymous mutations and abnormal splicing have increased recently, however, not much observations available described the synonymous mutations at the non-canonical splicing sites leading to abnormal splicing. In this pedigree, the proband was diagnosed Neurofibromatosis type I due to the presence of typical cafeā€™ au lait macules and pectus carinatum. Whole-exome sequencing identified a synonymous mutation c.6795C > T (p.N2265N) of the NF1 gene which was located at the non-canonical splicing sites. Reverse transcription polymerase chain reaction followed by Sanger sequencing was carried out, and the skipping of exon 45 was observed. Therefore, the pathogenicity of the synonymous mutation c.6795C > T was confirmed. Our finding expanded the spectrum of pathogenic mutations in Neurofibromatosis type I and provided information for genetic counseling

    A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification

    No full text
    Abstract The Drosophila tracheal system is a favorable model for investigating the program of tubular morphogenesis. This system is established in the embryo by post-mitotic cells, but also undergoes remodeling by adult stem cells. Here, we provide a comprehensive cell atlas of Drosophila trachea using the single-cell RNA-sequencing (scRNA-seq) technique. The atlas documents transcriptional profiles of tracheoblasts within the Drosophila airway, delineating 9 major subtypes. Further evidence gained from in silico as well as genetic investigations highlight a set of transcription factors characterized by their capacity to switch cell fate. Notably, the transcription factors Pebbled, Blistered, Knirps, Spalt and Cut are influenced by Notch signaling and determine tracheal cell identity. Moreover, Notch signaling orchestrates transcriptional activities essential for tracheoblast differentiation and responds to protein glycosylation that is induced by high sugar diet. Therefore, our study yields a single-cell transcriptomic atlas of tracheal development and regeneration, and suggests a glycosylation-responsive Notch signaling in cell fate determination

    Environmental and molecular regulation of diapause formation in a scyphozoan jellyfish

    No full text
    Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts

    Indian summer monsoon variations during the Younger Dryas as revealed by a laminated stalagmite record from the Tibetan Plateau

    No full text
    High-resolution and precisely dated hydroclimate records in the southeastern Tibetan Plateau (TP) remain sparse beyond the Holocene, which hampers our ability to understand the hydroclimate variability in this important Indian summer monsoon (ISM) fringe area and its global teleconnection. Here we present 3-y resolution delta O-18 and delta C-13 records from a laminated stalagmite (RG-3) from Rige Cave in the southeastern TP, spanning the Younger Dryas (YD). The records allow us to precisely characterize the timing, structure, and particularly centennial-scale events within the YD, and probe the control factors of precipitation delta O-18 ( delta O-18(p)) in the ISM fringe area. On centennial-millennial timescales, the Rige delta O-18 record shows coherent pattern with the East Asian summer monsoon (EASM) counterpart, combined with modeled delta O-18(p) results and spatial analysis, suggesting that delta O-18(p) in this part of the TP is largely controlled by the large-scale atmosphere circulation (or the ISM strength), and the altitude increase in the TP may not potentially result in an opposite delta O-18(p) pattern at least in the monsoonal TP regime. We also found significant delta C-13-delta O-18 covariation on the centennial timescale, suggesting a coincided ISM rainfall and biomass change during the YD. In the Rige records, one weak centennial-scale ISM event (namely the intra-Allerod cold period, [ACP) and three strong centennial-scale ISM events within the YD (namely A1'-A2'-A3') were prominent and occurred between similar to 12,470 and 12,310 +/- 14, similar to 12,210 -12,090 +/- 12 and similar to 12,010-11,920 +/- 12 y BP (before present, where present = 1950 CE), respectively. Spectral analyses of Rige records also revealed a significant similar to 200-y periodicity, which is nearly in-phase with observed centennial-scale variations of the North Atlantic temperature and mid-latitude westerlyjet during that time. These observations support the hypothesis that the solar de Vries cycle (207-y) triggered the centennial-scale climate variations in high northern latitude, leading to the ISM variations via fast atmospheric processes. (C) 2022 Elsevier Ltd. All rights reserved

    Restoring the dampened expression of the core clock molecule BMAL1 protects against compression-induced intervertebral disc degeneration

    No full text
    The circadian clock participates in maintaining homeostasis in peripheral tissues, including intervertebral discs (IVDs). Abnormal mechanical loading is a known risk factor for intervertebral disc degeneration (IDD). Based on the rhythmic daily loading pattern of rest and activity, we hypothesized that abnormal mechanical loading could dampen the IVD clock, contributing to IDD. Here, we investigated the effects of abnormal loading on the IVD clock and aimed to inhibit compression-induced IDD by targeting the core clock molecule brain and muscle Arnt-like protein-1 (BMAL1). In this study, we showed that BMAL1 KO mice exhibit radiographic features similar to those of human IDD and that BMAL1 expression was negatively correlated with IDD severity by systematic analysis based on 149 human IVD samples. The intrinsic circadian clock in the IVD was dampened by excessive loading, and BMAL1 overexpression by lentivirus attenuated compression-induced IDD. Inhibition of the RhoA/ROCK pathway by Y-27632 or melatonin attenuated the compression-induced decrease in BMAL1 expression. Finally, the two drugs partially restored BMAL1 expression and alleviated IDD in a diurnal compression model. Our results first show that excessive loading dampens the circadian clock of nucleus pulposus tissues via the RhoA/ROCK pathway, the inhibition of which potentially protects against compression-induced IDD by preserving BMAL1 expression. These findings underline the importance of the circadian clock for IVD homeostasis and provide a potentially effective therapeutic strategy for IDD
    corecore