49 research outputs found

    Preventive Effect of Curcumin Against Chemotherapy-Induced Side-Effects

    Get PDF
    Cancer is still a severe threat to the health of people worldwide. Chemotherapy is one of main therapeutic approaches to combat cancer. However, chemotherapy only has a limited success with severe side effects, especially causing damage to normal tissues such as bone marrow, gastrointestine, heart, liver, renal, neuron, and auditory tissues, etc. The side-effects limit clinical outcome of chemotherapy and lower patientsā€™ quality of life, and even make many patients discontinue the chemotherapy. Thus, there is a need to explore effective adjuvant strategies to prevent and reduce the chemotherapy-induced side effects. Naturally occurring products provide a rich source for exploring effective adjuvant agents to prevent and reduce the side effects in anticancer chemotherapy. Curcumin is an active compound from natural plant Curcuma longa L., which is widely used as a coloring and flavoring agent in food industry and a herbal medicine in Asian countries for thousands of years to treat vomiting, headache, diarrhea, etc. Modern pharmacological studies have revealed that curcumin has strong antioxidative, anti-microbial, anti-inflammatory and anticancer activities. Growing evidence shows that curcumin is able to prevent carcinogenesis, sensitize cancer cells to chemotherapy, and protect normal cells from chemotherapy-induced damages. In the present article, we review the preventive effect of curcumin against chemotherapy-induced myelosuppression, gastrointestinal toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, ototoxicity, and genotoxicity, and discuss its action mechanisms

    Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus.

    No full text
    Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn(2)Cys(6) transcription factor (TF) genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn(2)Cys(6)TF genes. A large variation in biological functions of Zn(2)Cys(6)TF genes was observed under the conditions tested. Sixty-one of 104 Zn(2)Cys(6) TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae

    Frequency-Dependent Brain Regional Homogeneity Alterations in Patients with Mild Cognitive Impairment during Working Memory State Relative to Resting State

    Get PDF
    Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI). However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control (NC) subjects. Therefore, using the index of regional homogeneity (ReHo), we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency dependent effects in separate frequency bands. Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex (PCC) in the slow-3 band (0.073-0.198 Hz), and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex (PFC), the left and right parietal occipital regions, and the right angular gyrus in the slow-5 band (0.01-0.027 Hz). Furthermore, in NCs, the value of ReHo in clusters belonging to the default mode network (DMN) decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the above mentioned regions with other parts of the brain in MCI patients. This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.</p

    Magnetic Driven Two-Finger Micro-Hand with Soft Magnetic End-Effector for Force-Controlled Stable Manipulation in Microscale

    No full text
    In recent years, micromanipulators have provided the ability to interact with micro-objects in industrial and biomedical fields. However, traditional manipulators still encounter challenges in gaining the force feedback at the micro-scale. In this paper, we present a micronewton force-controlled two-finger microhand with a soft magnetic end-effector for stable grasping. In this system, a homemade electromagnet was used as the driving device to execute micro-objects manipulation. There were two soft end-effectors with diameters of 300 Ī¼m. One was a fixed end-effector that was only made of hydrogel, and the other one was a magnetic end-effector that contained a uniform mixture of polydimethylsiloxane (PDMS) and paramagnetic particles. The magnetic force on the soft magnetic end-effector was calibrated using an atomic force microscopy (AFM) probe. The performance tests demonstrated that the magnetically driven soft microhand had a grasping range of 0ā€“260 Ī¼m, which allowed a clamping force with a resolution of 0.48 Ī¼N. The stable grasping capability of the magnetically driven soft microhand was validated by grasping different sized microbeads, transport under different velocities, and assembly of microbeads. The proposed system enables force-controlled manipulation, and we believe it has great potential in biological and industrial micromanipulation

    Casein Kinase 2 Mediates Degradation of Transcription Factor Pcf1 during Appressorium Formation in the Rice Blast Fungus

    No full text
    The appressorium is a specialized structure that is differentiated from Magnaporthe oryzae spores that can infect host cells. In the process of cellular transformation from spore to appressorium, the contents inside the spores are transferred into appressoria, accompanied by major differences in the gene expression model. In this study, we reported a transcription factor (TF), Pcf1, which was depressed at the transcription level and degraded at the protein level in nuclei of incipient appressoria at four hpi (hours post inoculation). To investigate its degradation mechanism, the interacting proteins of Pcf1 were identified using an immunoprecipitation-mass spectrometry (IP-MS) assay. Yeast two-hybrid (Y2H) and co-IP (co-immunoprecipitation) assays confirmed that Pcf1 interacted with the casein kinase 2 (CK2) holoenzyme through direct combination with the CKb2 subunit. Moreover, Pcf1 was ubiquitinated in the hyphae. These changes in Pcf1 protein levels in nuclei provide a new clue of how TFs are degraded during appressorium formation: temporarily unnecessary TFs in spores are phosphorylated through interacting with CK2 enzyme and are then ubiquitinated and digested by the ubiquitin proteasome system (UPS)

    Bayesian Network Analysis Reveals Alterations to Default Mode Network Connectivity in Individuals at Risk for Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is associated with abnormal functioning of the default mode network (DMN). Functional connectivity (FC) changes to the DMN have been found in patients with amnestic mild cognitive impairment (aMCI), which is the prodromal stage of AD. However, whether or not aMCI also alters the effective connectivity (EC) of the DMN remains unknown. We employed a combined group independent component analysis (ICA) and Bayesian network (BN) learning approach to resting-state functional MRI (fMRI) data from 17 aMCI patients and 17 controls, in order to establish the EC pattern of DMN, and to evaluate changes occurring in aMCI. BN analysis demonstrated heterogeneous regional convergence degree across DMN regions, which were organized into two closely interacting subsystems. Compared to controls, the aMCI group showed altered directed connectivity weights between DMN regions in the fronto-parietal, temporo-frontal, and temporo-parietal pathways. The aMCI group also exhibited altered regional convergence degree in the right inferior parietal lobule. Moreover, we found EC changes in DMN regions in aMCI were correlated with regional FC levels, and the connectivity metrics were associated with patients' cognitive performance. This study provides novel sights into our understanding of the functional architecture of the DMN and adds to a growing body of work demonstrating the importance of the DMN as a mechanism of aMCI

    Identification of SET Domain-Containing Proteins in Gossypium raimondii and Their Response to High Temperature Stress

    No full text
    SET (Su(var), E(z), and Trithorax) domain-containing proteins play an important role in plant development and stress responses through modifying lysine methylation status of histone. Gossypium raimondii may be the putative contributor of the D-subgenome of economical crops allotetraploid G. hirsutum and G. barbadense and therefore can potentially provide resistance genes. In this study, we identified 52 SET domain-containing genes from G. raimondii genome. Based on conserved sequences, these genes are grouped into seven classes and are predicted to catalyze the methylation of different substrates: GrKMT1 for H3K9me, GrKMT2 and GrKMT7 for H3K4me, GrKMT3 for H3K36me, GrKMT6 for H3K27me, but GrRBCMT and GrS-ET for nonhistones substrate-specific methylation. Seven pairs of GrKMT and GrRBCMT homologous genes are found to be duplicated, possibly one originating from tandem duplication and five from a large scale or whole genome duplication event. The gene structure, domain organization and expression patterns analyses suggest that these genesā€™ functions are diversified. A few of GrKMTs and GrRBCMTs, especially for GrKMT1A;1a, GrKMT3;3 and GrKMT6B;1 were affected by high temperature (HT) stress, demonstrating dramatically changed expression patterns. The characterization of SET domain-containing genes in G. raimondii provides useful clues for further revealing epigenetic regulation under HT and function diversification during evolution

    Zein nanoparticles stabilized by hydrophilic small molecule stabilizer matrine deliver curcumin effectively

    No full text
    Matrine (MAR), a quinolone alkaloid, was employed to augment the stability of zein nanoparticles. The incorporation of MAR into the hydrophobic shell of zein nanoparticles was primarily achieved through hydrogen bonding. Curcumin (CUR), a hydrophobic active substance, was encapsulated in the hydrophobic core of zein/matrine nanoparticles (ZMNPs). The preparation of ZMNPs and curcumin-loaded zein/matrine nanoparticles (CZMNPs) was accomplished using an antisolvent precipitation method. The encapsulation efficiency of curcumin in ZMNPs (zein/MAR = 8:1, 20 mg zein and 2.5 mg matrine) was significantly greater (52.64%) than that of nanoparticles produced from a single zein (2.50%). CZMNPs demonstrated a notable encapsulation efficiency and loading capacity (88.30% and 7.84%, respectively) upon the addition of 2 mg of curcumin, and were capable of sustained and gradual release of curcumin in simulated intestinal fluid. Furthermore, the stability of ZMNPs was observed to be favorable across a range of environmental conditions, including pH levels of 2ā€“4 and 6ā€“9, salt concentrations of ā‰¤150 mM, temperatures of ā‰¤90 Ā°C, and storage at room temperature for a duration of 30 days. Additionally, the inherent anti-cancer properties of MAR make CZMNPs a more efficacious inhibitor of tumor cell proliferation in vitro . Moreover, the uptake of CZMNPs by A549 cells was significantly enhanced, potentially through the process of endocytosis. Therefore, the incorporation of matrine in zein-based nanoparticles confers anticancer properties to the resulting ZMNPs. These nanoparticles can serve as encapsulating agents for bioactive compounds in pharmaceutical formulations and as a novel delivery strategy for long-term cancer care. Specifically, matrine is anticipated to function as a potential stabilizer for other nanosystems
    corecore