2 research outputs found

    Highly Reliable Performance of Flexible Synaptic Devices Based on PVP–GO QD Nanocomposites Due to the Formation of Directional Filaments

    No full text
    The metallic conductive filament (CF) model, which serves as an important conduction mechanism for realizing synaptic functions in electronic devices, has gained recognition and is the subject of extensive research. However, the formation of CFs within the active layer is plagued by issues such as uncontrolled and random growth, which severely impacts the stability of the devices. Therefore, controlling the growth of CFs and improving the performance of the devices have become the focus of that research. Herein, a synaptic device based on polyvinylpyrrolidone (PVP)/graphene oxide quantum dot (GO QD) nanocomposites is proposed. Doping GO QDs in the PVP provides a large number of active centers for the reduction of silver ions, which allows, to a certain extent, the growth of CFs to be controlled. Because of this, the proposed device can simulate a variety of synaptic functions, including the transition from long-term potentiation to long-term depression, paired-pulse facilitation, post-tetanic potentiation, transition from short-term memory to long-term memory, and the behavior of the “learning experience”. Furthermore, after being bent repeatedly, the devices were still able to simulate multiple synaptic functions accurately. Finally, the devices achieved a high recognition accuracy rate of 89.39% in the learning and inference tests, producing clear digit classification results

    PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte

    No full text
    <p>Studies using <i>in vitro</i> cultured oocytes have indicated that the protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, participates in multiple steps of meiosis. Details of oocyte maturation regulation by PP2A remain unclear and an <i>in vivo</i> model can provide more convincing information. Here, we inactivated PP2A by mutating genes encoding for its catalytic subunits (PP2Acs) in mouse oocytes. We found that eliminating both PP2Acs caused female infertility. Oocytes lacking PP2Acs failed to complete 1<sup>st</sup> meiotic division due to chromosome misalignment and abnormal spindle assembly. In mitosis, PP2A counteracts Aurora kinase B/C (AurkB/C) to facilitate correct kinetochore-microtubule (KT-MT) attachment. In meiosis I in oocyte, we found that PP2Ac deficiency destabilized KT-MT attachments. Chemical inhibition of AurkB/C in PP2Ac-null oocytes partly restored the formation of lateral/merotelic KT-MT attachments but not correct KT-MT attachments. Taken together, our findings demonstrate that PP2Acs are essential for chromosome alignments and regulate the formation of correct KT-MT attachments in meiosis I in oocytes.</p
    corecore