104 research outputs found

    Changes in aroma composition of blackberry wine during fermentation process

    Get PDF
    The study aimed at investigating the influence of fermentation (primary and secondary) on aroma composition of blackberry wine. Gas chromatography-mass spectrometry (GC-MS) was applied to quantify the compounds relevant to sparkling wine aroma. Investigation on this study revealed that a number of aroma components in raw material (55 in numbers), raw wine (54 in numbers), and aging wine (50 in numbers) were identified. In addition, 9 new aroma components such as octanoate, benzenepropanoic acid ethyl ester, ethyl benzoate, dodecyl ethyl, n-propanol, n-butanol, d-citronellol, benzaldehyde, and cedrol were detected in natural aging wine which appeared during secondary fermentation according to total peak areas of 4.69%. These findings reveal that natural aging is very important to aroma components formation of blackberry wine.Key words: Blackberry, gas chromatography, primary fermentation, secondary fermentation

    Circular RNAs as a potential source of neoepitopes in cancer

    Get PDF
    Neoepitopes have attracted much attention as targets for immunotherapy against cancer. Therefore, efficient neoepitope screening technology is an essential step in the development of personalized vaccines. Circular RNAs (circRNAs) are generated by back-splicing and have a single-stranded continuous circular structure. So far, various circRNAs have been poorly characterized, though new evidence suggests that a few translated circRNAs may play a role in cancer. In the present study, circRNA was used as a source of neoepitope, a novel strategy as circRNA-derived neoepitopes have never been previously explored. The present study reports CIRC_neo (circRNA-derived neoepitope prediction pipeline), which is a comprehensive and automated bioinformatic pipeline for the prediction of circRNA-derived neoepitopes from RNA sequencing data. The computational prediction from sequencing data requires complex computational workflows to identify circRNAs, derive the resulting peptides, infer the types of human leukocyte antigens (HLA I and HLA II) in patients, and predict the neoepitopes binding to these antigens. The present study proposes a novel source of neoepitopes. The study focused on cancer-specific circRNAs, which have greatly expanded the source pool for neoepitope discovery. The statistical analysis of different features of circRNA-derived neoepitopes revealed that circRNAs could produce long proteins or truncated proteins. Because the peptides were completely foreign to the human body, they could be highly immunogenic. Importantly, circRNA-derived neoepitopes capable of binding to HLA were discovered. In the current study, circRNAs were systematically analyzed, revealing potential targets and novel research clues for cancer diagnosis, treatment, and prospective personalized vaccine research

    Effect of Slightly Acidic Electrolyzed Water on Chlorophyll Degradation in Postharvest Broccoli

    Get PDF
    To explore the effect of slightly acidic electrolyzed water (SAEW) on chlorophyll degradation in postharvest broccoli, the pattern of changes in the color, total chlorophyll content, chlorophyll derivative content, chlorophyll degrading enzyme activities, and key chlorophyll metabolism-related gene expression of postharvest broccoli after treatment with 50 mg/L SAEW was analyzed. The results showed that SAEW treatment could effectively slow down the degradation of total chlorophyll, maintain the contents of chlorophyll derivatives chlorophyll a, chlorophyll b, chlorophyllide a, chlorophyllide b, pheophorbide a, and pheophytin a, and delay the increase in the activities of chlorophyll metabolizing enzymes, Mg-dechelatase, pheophytinase, and pheophorbide an oxygenase in postharvest broccoli. Meanwhile, it significantly inhibited the expression of the genes encoding chlorophyll b reductase, chlorophyllase 1, chlorophyllase 2, chlorosis protein, pheophytinase, pheophorbide an oxygenase, red chlorophyll catabolite reductase, and aging specific cysteine protease, thereby allowing color protection and freshness preservation. In conclusion, SAEW can be used as an effective method to delay postharvest chlorophyll degradation and inhibit yellowing and senescence in broccoli

    Human papillomavirus and cervical cancer in the microbial world: exploring the vaginal microecology

    Get PDF
    The vaginal microbiota plays a crucial role in female reproductive health and is considered a biomarker for predicting disease outcomes and personalized testing. However, its relationship with human papillomavirus (HPV) infection and cervical cancer is not yet clear. Therefore, this article provides a review of the association between the vaginal microbiota, HPV infection, and cervical cancer. We discuss the composition of the vaginal microbiota, its dysbiosis, and its relationship with HPV infection, as well as potential mechanisms in the development of cervical cancer. In addition, we assess the feasibility of treatment strategies such as probiotics and vaginal microbiota transplantation to modulate the vaginal microbiota for the prevention and treatment of diseases related to HPV infection and cervical cancer. In the future, extensive replication studies are still needed to gain a deeper understanding of the complex relationship between the vaginal microbiota, HPV infection, and cervical cancer, and to clarify the role of the vaginal microbiota as a potential biomarker for predicting disease outcomes, thus providing a theoretical basis for personalized testing

    Effects of Ultrasonic Atomization of Slightly Acidic Electrolyzed Water on the Circulation and Shelf Quality of Postharvest Baby Cabbage

    Get PDF
    To check the effect of slightly acidic electrolyzed water (SAEW) on the shelf quality of postharvest baby cabbage, the effects of ultrasonic atomization fumigation of SAEW with different concentrations (0, 50, 100 and 150 mg/L) on the postharvest preservation of baby cabbage were analyzed under low temperature circulation (4±1) ℃and shelf conditions (25±1) ℃. The results showed that, compared with the control and other concentrations of SAEW (50 and 150 mg/L), the ultrasonic atomization fumigation treatment of SAEW at 100 mg/L treatment significantly suppressed the increase in malondialdehyde content and the decrease in total glucosinolate content of baby cabbage at the 6th and 9th days of shelf life (P<0.05). Further circulation and shelf simulation results indicated that, compared with the control, the 100 mg/L SAEW ultrasonic atomization fumigation treatment reduced the total number of colonies by 17.04% and increased the total glucosinolate content by 30.11% in baby cabbage; In addition, this treatment significantly inhibited the accumulation of nitrite and malondialdehyde content (P<0.05), delayed the decline of soluble sugar, soluble protein, total phenol, ascorbic acid and isothiocyanate content, and increased the activity of myrosinase in postharvest baby cabbage. It was clear that ultrasonic atomization fumigation treatment of SAEW at 100 mg/L could not only effectively inhibit the growth of the total number of colonies in baby cabbage during circulation and shelf life, but also effectively slow down the degradation of nutritional quality in baby cabbage during this process, thus improving the preservation effect of baby cabbage

    Effect of Combined Treatment with Phenylalanine and 1-Methylcyclopropene on Anthocyanin Biosynthesis in Peach Peel

    Get PDF
    In order to explore the effect of postharvest treatment with combined phenylalanine (Phe) and 1-methylcyclopropene (1-MCP) on the appearance quality of peach fruits, bagged peach fruits were treated after harvest with water (control), Phe, 1-MCP or Phe combined with 1-MCP (Phe + 1-MCP). The changes in peach fruit phenotype, peel color difference, anthocyanin content, and the expression of genes associated with anthocyanidin and ethylene metabolism were measured during storage. The results showed that the single treatments with Phe or 1-MCP led to a higher peel anthocyanin content compared with the control group. Furthermore, the combined treatment was more effective in increasing the synthesis of anthocyanin than the single treatments. On the 6th day of storage, the anthocyanin content in the peel in the combined treatment group was 76.71 mg/kg, which was 7.29, 3.36, and 1.33 times higher than that in the control, Phe and 1-MCP groups, respectively. Phe + 1-MCP treatment effectively enhanced the expression of genes related to the synthesis of anthocyanins (PAL, CHS, CHI, F3H, DFR, ANS, UFGT, MYB10.1, bHLH-3 and WD40-1) and reduced the expression of genes related to ethylene synthesis and signal transduction (ACS, EIN4 and EIL) in peach peel. This study not only further confirmed that 1-MCP treatment can effectively promote the synthesis of anthocyanin in peach peel, but also found a synergistic effect between Phe and 1-MCP, which will provide a theoretical basis for the application of Phe + 1-MCP in the regulation of peach color after harvest

    Identification of specific prognostic markers for lung squamous cell carcinoma based on tumor progression, immune infiltration, and stem index

    Get PDF
    IntroductionLung squamous cell carcinoma (LUSC) is a unique subform of nonsmall cell lung cancer (NSCLC). The lack of specific driver genes as therapeutic targets leads to worse prognoses in patients with LUSC, even with chemotherapy, radiotherapy, or immune checkpoint inhibitors. Furthermore, research on the LUSC-specific prognosis genes is lacking. This study aimed to develop a comprehensive LUSC-specific differentially expressed genes (DEGs) signature for prognosis correlated with tumor progression, immune infiltration,and stem index.MethodsRNA sequencing data for LUSC and lung adenocarcinoma (LUAD) were extracted from The Cancer Genome Atlas (TCGA) data portal, and DEGs analyses were conducted in TCGA-LUSC and TCGA-LUAD cohorts to identify specific DEGs associated with LUSC. Functional analysis and protein–protein interaction network were performed to annotate the roles of LUSC-specific DEGs and select the top 100 LUSC-specific DEGs. Univariate Cox regression and least absolute shrinkage and selection operator regression analyses were performed to select prognosis-related DEGs.ResultsOverall, 1,604 LUSC-specific DEGs were obtained, and a validated seven-gene signature was constructed comprising FGG, C3, FGA, JUN, CST3, CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were correlated with poor LUSC prognosis, whereas CPSF4 and HIST1H2BH were potential positive prognosis markers in patients with LUSC. Receiver operating characteristic analysis further confirmed that the genetic profile could accurately estimate the overall survival of LUSC patients. Analysis of immune infiltration demonstrated that the high risk (HR) LUSC patients exhibited accelerated tumor infiltration, relative to low risk (LR) LUSC patients. Molecular expressions of immune checkpoint genes differed significantly between the HR and LR cohorts. A ceRNA network containing 19 lncRNAs, 50 miRNAs, and 7 prognostic DEGs was constructed to demonstrate the prognostic value of novel biomarkers of LUSC-specific DEGs based on tumor progression, stemindex, and immune infiltration. In vitro experimental models confirmed that LUSC-specific DEG FGG expression was significantly higher in tumor cells and correlated with immune tumor progression, immune infiltration, and stem index. In vitro experimental models confirmed that LUSC-specific DEG FGG expression was significantly higher in tumor cells and correlated with immune tumor progression, immune infiltration, and stem index.ConclusionOur study demonstrated the potential clinical implication of the 7- DEGs signature for prognosis prediction of LUSC patients based on tumor progression, immune infiltration, and stem index. And the FGG could be an independent prognostic biomarker of LUSC promoting cell proliferation, migration, invasion, THP-1 cell infiltration, and stem cell maintenance
    • …
    corecore