64 research outputs found

    Genetic diversity analysis of DRB3.2 in domestic yak (Bos grunniens) in Qinghai-Tibetan Plateau

    Get PDF
    DRB3 gene has been extensively evaluated as a candidate marker for association with many bovine disease and immunological traits. A hemi-nested polymerase chain reaction-sequencing method was used to investigate the polymorphisms of DRB3.2 gene from 209 individuals in three different domestic yak (Bos grunniens) populations (62 Tianzhu white yaks, 78 Gannan yaks and 69 Datong yaks) from the Qinghai-Tibetan Plateau. Sixty-three polymorphic sites and 143 haplotypes were detected. The percentage of polymorphic sites in Gannan Yak (GNY), Tianzhu white Yak (TWY) and Datong Yak (DTY) were 21.80, 29.95 and 12.95%, while the haplotype diversity were 0.9987, 0.9984 and 0.9855, respectively. At the amino acid level, Glu had the highest content; the percentage was 12.326%, followed by Arg (10.315%), Phe (10.804%), Val (8.346%), Gly (8.315%), Leu (6.606%) and Ala (5.851%), whereas Met and Ile were below than 1%. Only 19 amino acids were found in DTY, Met was lost. Among the synonymous codons, whose third base was G and/or C had a higher usage frequency. Most variability were found in amino acid residues 11, 13, 26, 28, 30, 32, 37, 56, 57, 59, 60, 61, 67, 70, 71, 72, 73 and 74. In GNY, the residues at positions 71, 11 and 72 were highly polymorphic with 8, 7 and 7, at 50, 58, 70, 74 and 78, the residues were selectively polymorphic than other yak populations; the other polymorphic sites were common in the populations. The results of this study indicated that the Chinese domestic yak populations in the Qinghai-Tibetan Plateau have abundant polymorphism in DRB3.2, and the GNY was the highest, followed by TWY and DTY.Key words: Domestic Yak, Hemi-nested PCR, BoLA-DRB3.2, polymorphism

    Evaluation of 17 microsatellite markers for parentage testing and individual identification of domestic yak (Bos grunniens)

    Get PDF
    Background Yak (Bos grunniens) is the most important domestic animal for people living at high altitudes. Yak ordinarily feed by grazing, and this behavior impacts the accuracy of the pedigree record because it is difficult to control mating in grazing yak. This study aimed to evaluate the pedigree system and individual identification in polled yak. Methods A total of 71 microsatellite loci were selected from the literature, mostly from the studies on cattle. A total of 35 microsatellite loci generated excellent PCR results and were evaluated for the parentage testing and individual identification of 236 unrelated polled yaks. A total of 17 of these 35 microsatellite loci had polymorphic information content (PIC) values greater than 0.5, and these loci were in Hardy–Weinberg equilibrium without linkage disequilibrium. Results Using multiplex PCR, capillary electrophoresis, and genotyping, very high exclusion probabilities were obtained for the combined core set of 17 loci. The exclusion probability (PE) for one candidate parent when the genotype of the other parent is not known was 0.99718116. PE for one candidate parent when the genotype of the other parent is known was 0.99997381. PE for a known candidate parent pair was 0.99999998. The combined PEI (PE for identity of two unrelated individuals) and PESI (PE for identity of two siblings) were >0.99999999 and 0.99999899, respectively. These findings indicated that the combination of 17 microsatellite markers could be useful for efficient and reliable parentage testing and individual identification in polled yak. Discussion Many microsatellite loci have been investigated for cattle paternity testing. Nevertheless, these loci cannot be directly applied to yak identification because the two bovid species have different genomic sequences and organization. A total of 17 loci were selected from 71 microsatellite loci based on efficient amplification, unambiguous genotyping, and high PIC values for polled yaks, and were suitable for parentage analysis in polled yak populations

    Microbiome and Metabolomics Reveal the Effects of Different Feeding Systems on the Growth and Ruminal Development of Yaks

    Get PDF
    The change in the feeding system can greatly improve the growth performance of the yak (Bos grunniens), an important livestock species in the plateau region. Here, we comprehensively compared the effects of different feeding systems on the growth performance and ruminal development of yaks, and investigated the effects of ruminal microorganisms and metabolites using the 16S rRNA gene sequencing and liquid chromatograph–mass spectrometer (LC-MS) technologies. We found that compared to traditional grazing feeding, house feeding significantly improved the growth performance (such as average daily gain and net meat weight) and rumen development of the yaks. At the genus level, the abundance of Rikenellaceae RC9 Gut group, Christensenellaceae R-7 group, Lachnospiraceae NK3A20 group, Ruminococcaceae UCG-014, and Prevotellaceae UCG-003 showed significant differences and was closely related to rumen development in the two distinct feeding systems. Also, metabolomics revealed that the change in the feeding system significantly affected the concentration and metabolic pathways of the related rumen metabolites. The metabolites with significant differences were significantly enriched in purine metabolism (xanthine, adenine, inosine, etc.), tyrosine metabolism (L-tyrosine, dopaquinone, etc.), phenylalanine metabolism (dihydro-3-caumaric acid, hippuric acid, etc.), and cAMP signaling pathway [acetylcholine, (-)-epinephrine, etc.]. This study scientifically support the house fattening feeding system for yaks. Also, our results provide new insights into the composition and function of microbial communities that promote ruminal development and in general growth of the yaks

    Short-term Forecast of Multiple Loads in Integrated Energy System Based on IPSO-WNN

    No full text
    Accurate short-term energy load forecasting has a considerable influence on the economic scheduling and optimal operation of integrated energy system. This study proposes an improved particle swarm optimization-wavelet neural network (IPSO-WNN) method for short-term load forecasting of integrated energy system. First, Kendall rank correlation coefficient in Copula theory is used to analyze the correlation among the influencing factors, through which the influencing factors with strong correlation are selected as input variables of the model. Secondly, chaos algorithm and adaptive weight selection strategy are introduced in the POS-WNN forecasting model to improve the prediction accuracy. Therefore, a short-term load forecasting model of integrated energy system based on IPSO-WNN is established. Finally, the analysis of examples shows that the load prediction accuracy is significantly improved based on the IPSO-WNN model compared with the traditional forecasting model

    Explaining Unsaturated Fatty Acids (UFAs), Especially Polyunsaturated Fatty Acid (PUFA) Content in Subcutaneous Fat of Yaks of Different Sex by Differential Proteome Analysis

    No full text
    Residents on the Tibetan Plateau intake a lot of yak subcutaneous fat by diet. Modern healthy diet ideas demand higher unsaturated fatty acids (UFAs), especially polyunsaturated fatty acid (PUFA) content in meat. Here, the gas chromatography (GC) and tandem mass tag (TMT) proteomic approaches were applied to explore the relationship between the proteomic differences and UFA and PUFA content in the subcutaneous fat of yaks with different sex. Compared with male yaks (MYs), the absolute contents of UFAs, monounsaturated fatty acids (MUFAs) and PUFAs in the subcutaneous fat of female yaks (FYs) were all higher (p < 0.01); the relative content of MUFAs and PUFAs in MY subcutaneous fat was higher, and the value of PUFAs/SFAs was above 0.4, so the MY subcutaneous fat is more healthy for consumers. Further studies showed the transcriptional regulation by peroxisome proliferator-activated receptor delta (PPARD) played a key role in the regulation of UFAs, especially PUFA content in yaks of different sex. In FY subcutaneous fat, the higher abundance of the downstream effector proteins in PPAR signal, including acyl-CoA desaturase (SCD), elongation of very-long-chain fatty acids protein 6 (ELOVL6), lipoprotein lipase (LPL), fatty acid-binding protein (FABP1), very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 (HACD3), long-chain fatty acid CoA ligase 5 (ACSL5) and acyl-CoA-binding protein 2 (ACBP2), promoted the UFAs’ transport and synthesis. The final result was the higher absolute content of c9-C14:1, c9-C18:1, c9,c12-C18:2n-6, c9, c12, c15-C18:3n-3, c5, c8, c11, c14, c17-C20:5n-3, c4, c7, c10, c13, -c16, c19-C22:6n-3, UFAs, MUFAs and PUFAs in FY subcutaneous fat. Further, LPL, FABP1, HACD3, ACSL1 and ACBP2 were the potential biomarkers for PUFA contents in yak subcutaneous fat. This study provides new insights into the molecular mechanisms associated with UFA contents in yak subcutaneous fat

    The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat

    No full text
    Fat deposition is very important to the growth and reproduction of yaks. In this study, the effect of the feeding system on fat deposition in yaks was explored by transcriptomics and lipidomics. The thickness of the subcutaneous fat in yaks under stall (SF) and graze feeding (GF) was evaluated. The transcriptomes and lipidomes of the subcutaneous fat in yaks under different feeding systems were detected by RNA-sequencing (RNA-Seq) and non-targeted lipidomics based on ultrahigh-phase liquid chromatography tandem mass spectrometry (UHPLC-MS), respectively. The differences in lipid metabolism were explored, and the function of differentially expressed genes (DEGs) was evaluated by gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) analysis. Compared with GF yaks, SF yaks possessed stronger fat deposition capacity. The abundance of 12 triglycerides (TGs), 3 phosphatidylethanolamines (PEs), 3 diglycerides (DGs), 2 sphingomyelins (SMs) and 1 phosphatidylcholine (PC) in the subcutaneous fat of SF and GF yaks was significantly different. Under the mediation of the cGMP–PKG signaling pathway, the blood volume of SF and GF yaks may be different, which resulted in the different concentrations of precursors for fat deposition, including non-esterified fatty acid (NEFA), glucose (GLU), TG and cholesterol (CH). The metabolism of C16:0, C16:1, C17:0, C18:0, C18:1, C18:2 and C18:3 in yak subcutaneous fat was mainly realized under the regulation of the INSIG1, ACACA, FASN, ELOVL6 and SCD genes, and TG synthesis was regulated by the AGPAT2 and DGAT2 genes. This study will provide a theoretical basis for yak genetic breeding and healthy feeding

    Effect of Chromium on Microstructure and Oxidation Wear Behavior of High-Boron High-Speed Steel at Elevated Temperatures

    No full text
    In order to investigate the effect of Cr content on the microstructures and oxidation wear properties of high-boron high-speed steel (HBHSS), so as to explore oxidation wear resistant materials (e.g., hot rollers), a scanning electron microscope, an X-ray diffractometer, an electron probe X-ray microanalysis and an oxidation wear test at elevated temperatures were employed to investigate worn surfaces and worn layers. The results showed that the addition of Cr resulted in the transformation of martensite into ferrite and pearlite, while the size of the grid morphology of borides in HBHSSs was refined. After oxidation wear, oxide scales were formed and the high-temperature oxidation wear resistance of HBHSSs was gradually improved with increased additions of Cr. Meanwhile, an interaction between temperature and load in HBHSSs during oxidation wear occurred, and the temperature had more influence on the oxidation wear properties of HBHSSs. SEM observations indicated that a uniform and compact oxide film of HBHSSs in the worn surface at elevated temperatures was generated on the worn surface, and the addition of Cr also reduced the thickness of oxides and inhibited the spallation of worn layers, which was attributed to improvements in microhardness and oxidation resistance of the matrix in HBHSSs. A synergistic effect of temperature and load in HBHSSs with various Cr additions may dominate the oxidation wear process and the formation and spallation of oxide films

    Complete mitochondrial genome of Equus caballus (Datong horse)

    No full text
    Datong horse processes a muscular physique with high tolerance to extensive management and adapts well to high altitude conditions in Qinghai, China. In this study, the whole mitochondrial genome sequence of E. caballus determined using next-generation sequencing data was 16,654 bp in length, consisting of 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and a non-coding control region. Notably, there was one tandem repeat with 21 ‘CACCTGTG’ located in the control region. The base composition of the genome was A (32.3%), C (28.6%), G (13.3%), and T (25.8%), with an A + T content of 58.1%. Molecular phylogeny demonstrated that E. caballus was more closely related to a breed from central Asia and processed distinct relationships with some Chinese breeds. This work characterized the mitogenome of E. caballus (Datong horse breed) and present significant genetic information for this valuable specimen

    Characterization of RNA Editome in the Mammary Gland of Yaks during the Lactation and Dry Periods

    No full text
    The mammary gland is a complicated organ comprising several types of cells, and it undergoes extensive morphogenetic and metabolic changes during the female reproductive cycle. RNA editing is a posttranscriptional modification event occurring at the RNA nucleotide level, and it drives transcriptomic and proteomic diversities, with potential functional consequences. RNA editing in the mammary gland of yaks, however, remains poorly understood. Here, we used REDItools to identify RNA editing sites in mammary gland tissues in yaks during the lactation period (LP, n = 2) and dry period (DP, n = 3). Totally, 82,872 unique RNA editing sites were identified, most of which were detected in the noncoding regions with a low editing degree. In the coding regions (CDS), we detected 5235 editing sites, among which 1884 caused nonsynonymous amino acid changes. Of these RNA editing sites, 486 were found to generate novel possible miRNA target sites or interfere with the initial miRNA binding sites, indicating that RNA editing was related to gene regulation mediated by miRNA. A total of 14,159 RNA editing sites (involving 3238 common genes) showed a significant differential editing level in the LP when compared with that in the DP through Tukey’s Honest Significant Difference method (p < 0.05). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, genes that showed different RNA editing levels mainly participated in pathways highly related to mammary gland development, including MAPK, PI3K-Akt, FoxO, and GnRH signaling pathways. Collectively, this work demonstrated for the first time the dynamic RNA editome profiles in the mammary gland of yaks and shed more light on the mechanism that regulates lactation together with mammary gland development

    Two Different Copy Number Variations of the SOX5 and SOX8 Genes in Yak and Their Association with Growth Traits

    No full text
    Copy number variation (CNV) is a structural variant with significant impact on genetic diversity. CNV has been widely used in breeding for growth traits, meat production or quality, and coat color. SRY-like box genes (SOXs) are a class of transcription factors that play a regulatory role in cell fate specification and differentiation. SOX5 and SOX8 belong to subgroups D and E of the SOXs, respectively. Previous studies have shown that SOX5 and SOX8 are essential in the development of bones. In this study, we explored the association between the growth traits and CNVs of SOX5 and SOX8 in 326 Ashidan yaks and detected mRNA expression levels in different tissues. Our results illustrated that CNVs of SOX5 and SOX8 were significantly associated with withers height at 18 months of age and chest girth at 30 months of age (p p p p < 0.05). Our results provide evidence that the CNVs of SOX5 and SOX8 genes could be used as new markers for the selection of yak growth traits
    • …
    corecore