13 research outputs found

    Metal–Organic Framework Nodes Support Single-Site Magnesium–Alkyl Catalysts for Hydroboration and Hydroamination Reactions

    No full text
    Here we present the first example of a single-site main group catalyst stabilized by a metal–organic framework (MOF) for organic transformations. The straightforward metalation of the secondary building units of a Zr-MOF with Me<sub>2</sub>Mg affords a highly active and reusable solid catalyst for hydroboration of carbonyls and imines and for hydroamination of aminopentenes. Impressively, the Mg-functionalized MOF displayed very high turnover numbers of up to 8.4 × 10<sup>4</sup> for ketone hydroboration and could be reused more than 10 times. MOFs can thus be used to develop novel main group solid catalysts for sustainable chemical synthesis

    Trivalent Zirconium and Hafnium Metal–Organic Frameworks for Catalytic 1,4-Dearomative Additions of Pyridines and Quinolines

    No full text
    We report the quantitative conversion of [M<sup>IV</sup><sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub>Cl<sub>12</sub>]<sup>6–</sup> nodes in the MCl<sub>2</sub>-BTC metal–organic framework into the [M<sup>III</sup><sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-ONa)<sub>4</sub>H<sub>6</sub>]<sup>6–</sup> nodes in M<sup>III</sup>H-BTC (M = Zr, Hf; BTC is 1,3,5-benzenetricarboxylate) via bimetallic reductive elimination of H<sub>2</sub> from putative [M<sup>IV</sup><sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub>H<sub>12</sub>]<sup>6–</sup> nodes. The coordinatively unsaturated M<sup>III</sup>H centers in M<sup>III</sup>H-BTC are highly active and selective for 1,4-dearomative hydroboration and hydrosilylation of pyridines and quinolines. This work demonstrated the potential of secondary building unit transformation in generating electronically unique and homogeneously inaccessible single-site solid catalysts for organic synthesis

    Cerium-Hydride Secondary Building Units in a Porous Metal–Organic Framework for Catalytic Hydroboration and Hydrophosphination

    No full text
    We report the stepwise, quantitative transformation of Ce<sup>IV</sup><sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub>­(OH)<sub>6</sub>(OH<sub>2</sub>)<sub>6</sub> nodes in a new Ce-BTC (BTC = trimesic acid) metal–organic framework (MOF) into the first Ce<sup>III</sup><sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OLi)<sub>4</sub>(H)<sub>6</sub>(THF)<sub>6</sub>Li<sub>6</sub> metal-hydride nodes that effectively catalyze hydroboration and hydrophosphination reactions. CeH-BTC displays low steric hindrance and electron density compared to homogeneous organolanthanide catalysts, which likely accounts for the unique 1,4-regioselectivity for the hydroboration of pyridine derivatives. MOF nodes can thus be directly transformed into novel single-site solid catalysts without homogeneous counterparts for sustainable chemical synthesis

    Confinement of Ultrasmall Cu/ZnO<sub><i>x</i></sub> Nanoparticles in Metal–Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO<sub>2</sub>

    No full text
    The interfaces of Cu/ZnO and Cu/ZrO<sub>2</sub> play vital roles in the hydrogenation of CO<sub>2</sub> to methanol by these composite catalysts. Surface structural reorganization and particle growth during catalysis deleteriously reduce these active interfaces, diminishing both catalytic activities and MeOH selectivities. Here we report the use of preassembled bpy and Zr<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub> sites in UiO-bpy metal–organic frameworks (MOFs) to anchor ultrasmall Cu/ZnO<sub><i>x</i></sub> nanoparticles, thus preventing the agglomeration of Cu NPs and phase separation between Cu and ZnO<sub><i>x</i></sub> in MOF-cavity-confined Cu/ZnO<sub><i>x</i></sub> nanoparticles. The resultant Cu/ZnO<sub><i>x</i></sub>@MOF catalysts show very high activity with a space–time yield of up to 2.59 g<sub>MeOH</sub> kg<sub>Cu</sub><sup>–1</sup> h<sup>–1</sup>, 100% selectivity for CO<sub>2</sub> hydrogenation to methanol, and high stability over 100 h. These new types of strong metal–support interactions between metallic nanoparticles and organic chelates/metal-oxo clusters offer new opportunities in fine-tuning catalytic activities and selectivities of metal nanoparticles@MOFs

    Tuning Lewis Acidity of Metal–Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies

    No full text
    The Lewis acidity of metal–organic frameworks (MOFs) has attracted much research interest in recent years. We report here the development of two quantitative methods for determining the Lewis acidity of MOFsbased on electron paramagnetic resonance (EPR) spectroscopy of MOF-bound superoxide (O<sub>2</sub><sup>•–</sup>) and fluorescence spectroscopy of MOF-bound <i>N</i>-methylacridone (NMA)and a simple strategy that significantly enhances MOF Lewis acidity through ligand perfluorination. Two new perfluorinated MOFs, Zr<sub>6</sub>-fBDC and Zr<sub>6</sub>-fBPDC, where H<sub>2</sub>fBDC is 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid and H<sub>2</sub>fBPDC is 2,2′,3,3′,5,5′,6,6′-octafluoro-4,4′-biphenyldicarboxylic acid, were shown to be significantly more Lewis acidic than nonsubstituted UiO-66 and UiO-67 as well as the nitrated MOFs Zr<sub>6</sub>-BDC-NO<sub>2</sub> and Zr<sub>6</sub>-BPDC-(NO<sub>2</sub>)<sub>2</sub>. Zr<sub>6</sub>-fBDC was shown to be a highly active single-site solid Lewis acid catalyst for Diels–Alder and arene C–H iodination reactions. Thus, this work establishes the important role of ligand perfluorination in enhancing MOF Lewis acidity and the potential of designing highly Lewis acidic MOFs for fine chemical synthesis

    Tuning Lewis Acidity of Metal–Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies

    No full text
    The Lewis acidity of metal–organic frameworks (MOFs) has attracted much research interest in recent years. We report here the development of two quantitative methods for determining the Lewis acidity of MOFsbased on electron paramagnetic resonance (EPR) spectroscopy of MOF-bound superoxide (O<sub>2</sub><sup>•–</sup>) and fluorescence spectroscopy of MOF-bound <i>N</i>-methylacridone (NMA)and a simple strategy that significantly enhances MOF Lewis acidity through ligand perfluorination. Two new perfluorinated MOFs, Zr<sub>6</sub>-fBDC and Zr<sub>6</sub>-fBPDC, where H<sub>2</sub>fBDC is 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid and H<sub>2</sub>fBPDC is 2,2′,3,3′,5,5′,6,6′-octafluoro-4,4′-biphenyldicarboxylic acid, were shown to be significantly more Lewis acidic than nonsubstituted UiO-66 and UiO-67 as well as the nitrated MOFs Zr<sub>6</sub>-BDC-NO<sub>2</sub> and Zr<sub>6</sub>-BPDC-(NO<sub>2</sub>)<sub>2</sub>. Zr<sub>6</sub>-fBDC was shown to be a highly active single-site solid Lewis acid catalyst for Diels–Alder and arene C–H iodination reactions. Thus, this work establishes the important role of ligand perfluorination in enhancing MOF Lewis acidity and the potential of designing highly Lewis acidic MOFs for fine chemical synthesis

    Transformation of Metal–Organic Framework Secondary Building Units into Hexanuclear Zr-Alkyl Catalysts for Ethylene Polymerization

    No full text
    We report the stepwise and quantitative transformation of the Zr<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub>(HCO<sub>2</sub>)<sub>6</sub> nodes in Zr-BTC (MOF-808) to the [Zr<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub>Cl<sub>12</sub>]<sup>6–</sup> nodes in ZrCl<sub>2</sub>-BTC, and then to the organometallic [Zr<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OLi)<sub>4</sub>R<sub>12</sub>]<sup>6–</sup> nodes in ZrR<sub>2</sub>-BTC (R = CH<sub>2</sub>SiMe<sub>3</sub> or Me). Activation of ZrCl<sub>2</sub>-BTC with MMAO-12 generates ZrMe-BTC, which is an efficient catalyst for ethylene polymerization. ZrMe-BTC displays unusual electronic and steric properties compared to homogeneous Zr catalysts, possesses multimetallic active sites, and produces high-molecular-weight linear polyethylene. Metal–organic framework nodes can thus be directly transformed into novel single-site solid organometallic catalysts without homogeneous analogs for polymerization reactions

    Titanium(III)-Oxo Clusters in a Metal–Organic Framework Support Single-Site Co(II)-Hydride Catalysts for Arene Hydrogenation

    No full text
    Titania (TiO<sub>2</sub>) is widely used in the chemical industry as an efficacious catalyst support, benefiting from its unique strong metal–support interaction. Many proposals have been made to rationalize this effect at the macroscopic level, yet the underlying molecular mechanism is not understood due to the presence of multiple catalytic species on the TiO<sub>2</sub> surface. This challenge can be addressed with metal–organic frameworks (MOFs) featuring well-defined metal oxo/hydroxo clusters for supporting single-site catalysts. Herein we report that the Ti<sub>8</sub>(μ<sub>2</sub>-O)<sub>8</sub>(μ<sub>2</sub>-OH)<sub>4</sub> node of the Ti-BDC MOF (MIL-125) provides a single-site model of the classical TiO<sub>2</sub> support to enable Co<sup>II</sup>-hydride-catalyzed arene hydrogenation. The catalytic activity of the supported Co<sup>II</sup>-hydride is strongly dependent on the reduction of the Ti-oxo cluster, definitively proving the pivotal role of Ti<sup>III</sup> in the performance of the supported catalyst. This work thus provides a molecularly precise model of Ti-oxo clusters for understating the strong metal–support interaction of TiO<sub>2</sub>-supported heterogeneous catalysts

    Electron Crystallography Reveals Atomic Structures of Metal–Organic Nanoplates with M<sub>12</sub>(μ<sub>3</sub>‑O)<sub>8</sub>(μ<sub>3</sub>‑OH)<sub>8</sub>(μ<sub>2</sub>‑OH)<sub>6</sub> (M = Zr, Hf) Secondary Building Units

    No full text
    Nanoscale metal–organic frameworks (nMOFs) have shown tremendous potential in cancer therapy and biomedical imaging. However, their small dimensions present a significant challenge in structure determination by single-crystal X-ray crystallography. We report here the structural determination of nMOFs by rotation electron diffraction (RED). Two isostructural Zr- and Hf-based nMOFs with linear biphenyldicarboxylate (BPDC) or bipyridinedicarboxylate (BPYDC) linkers are stable under intense electron beams to allow the collection of high-quality RED data, which reveal a MOF structure with M<sub>12</sub>(μ<sub>3</sub>-O)<sub>8</sub>(μ<sub>3</sub>-OH)<sub>8</sub>(μ<sub>2</sub>-OH)<sub>6</sub> (M = Zr, Hf) secondary building units (SBUs). The nMOF structures differ significantly from their UiO bulk counterparts with M<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub> SBUs and provide the foundation for clarifying the structures of a series of previously reported nMOFs with significant potential in cancer therapy and biological imaging. Our work clearly demonstrates the power of RED in determining nMOF structures and elucidating the formation mechanism of distinct nMOF morphologies

    Single-Site Cobalt Catalysts at New Zr<sub>8</sub>(μ<sub>2</sub>‑O)<sub>8</sub>(μ<sub>2</sub>‑OH)<sub>4</sub> Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles

    No full text
    We report here the synthesis of robust and porous metal–organic frameworks (MOFs), M-MTBC (M = Zr or Hf), constructed from the tetrahedral linker methane-tetrakis­(<i>p</i>-biphenylcarboxylate) (MTBC) and two types of secondary building units (SBUs): cubic M<sub>8</sub>(μ<sub>2</sub>-O)<sub>8</sub>(μ<sub>2</sub>-OH)<sub>4</sub> and octahedral M<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub>. While the M<sub>6</sub>-SBU is isostructural with the 12-connected octahedral SBUs of UiO-type MOFs, the M<sub>8</sub>-SBU is composed of eight M<sup>IV</sup> ions in a cubic fashion linked by eight μ<sub>2</sub>-oxo and four μ<sub>2</sub>-OH groups. The metalation of Zr-MTBC SBUs with CoCl<sub>2</sub>, followed by treatment with NaBEt<sub>3</sub>H, afforded highly active and reusable solid Zr-MTBC-CoH catalysts for the hydrogenation of alkenes, imines, carbonyls, and heterocycles. Zr-MTBC-CoH was impressively tolerant of a range of functional groups and displayed high activity in the hydrogenation of tri- and tetra-substituted alkenes with TON > 8000 for the hydrogenation of 2,3-dimethyl-2-butene. Our structural and spectroscopic studies show that site isolation of and open environments around the cobalt-hydride catalytic species at Zr<sub>8</sub>-SBUs are responsible for high catalytic activity in the hydrogenation of a wide range of challenging substrates. MOFs thus provide a novel platform for discovering and studying new single-site base-metal solid catalysts with enormous potential for sustainable chemical synthesis
    corecore