20 research outputs found
HDAC4 represses ER stress induced chondrocyte apoptosis by inhibiting ATF4 and attenuates cartilage degeneration in an osteoarthritis rat model
Abstract Background The present study evaluated whether the lack of histone deacetylase 4 (HDAC4) increases endoplasmic reticulum stress-induced chondrocyte apoptosis by releasing activating transcription factor 4 (ATF4) in human osteoarthritis (OA) cartilage degeneration. Methods Articular cartilage from the tibial plateau was obtained from patients with OA during total knee replacement. Cartilage extracted from severely damaged regions was classified as degraded cartilage, and cartilage extracted from a relatively smooth region was classified as preserved cartilage. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect chondrocyte apoptosis. HDAC4, ATF4, and C/EBP homologous protein (CHOP) expression levels were measured using immunohistochemistry staining and real-time quantitative PCR. Chondrocytes were transfected with HDAC4 or HDAC4 siRNA for 24 h and stimulated with 300 µM H2O2 for 12 h. The chondrocyte apoptosis was measured using flow cytometry. ATF4, CHOP, and caspase 12 expression levels were measured using real-time quantitative PCR and western blotting. Male Sprague-Dawley rats (n = 15) were randomly divided into three groups and transduced with different vectors: ACLT + Ad-GFP, ACLT + Ad-HDAC4-GFP, and sham + Ad-GFP. All rats received intra-articular injections 48 h after the operation and every three weeks thereafter. Cartilage damage was assessed using Safranin O staining and quantified using the Osteoarthritis Research Society International score. ATF4, CHOP, and collagen II expression were detected using immunohistochemistry, and chondrocyte apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Results The chondrocyte apoptosis was higher in degraded cartilage than in preserved cartilage. HDAC4 expression was lower in degraded cartilage than in preserved cartilage. ATF4 and CHOP expression was increased in degraded cartilage. Upregulation of HDAC4 in chondrocytes decreased the expression of ATF4, while the expression of ATF4 was increased after downregulation of HDAC4. Upregulation of HDAC4 decreased the chondrocyte apoptosis under endoplasmic reticulum stress, and chondrocyte apoptosis was increased after downregulation of HDAC4. In a rat anterior cruciate ligament transection OA model, adenovirus-mediated transduction of HDAC4 was administered by intra-articular injection. We detected a stronger Safranin O staining with lower Osteoarthritis Research Society International scores, lower ATF4 and CHOP production, stronger collagen II expression, and lower chondrocyte apoptosis in rats treated with Ad-HDAC4. Conclusion The lack of HDAC4 expression partially contributes to increased ATF4, CHOP, and endoplasmic reticulum stress-induced chondrocyte apoptosis in OA pathogenesis. HDAC4 attenuates cartilage damage by repressing ATF4-CHOP signaling-induced chondrocyte apoptosis in a rat model of OA
A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering
Polyvinyl alcohol (PVA) hydrogels are considered to be ideal materials for tissue engineering due to their high water content, low frictional behavior, and good biocompatibility. However, their limited mechanical properties restrict them from being applied when repairing load-bearing tissue. Inspired by the composition of mussels, we fabricated polyvinyl alcohol/hydroxyapatite/tannic acid (PVA/HA/TA) hydrogels through a facile freeze–thawing method. The resulting composite hydrogels exhibited high moisture content, porous structures, and good mechanical properties. The compressive strength and tensile strength of PVA hydrogels were improved from 0.77 ± 0.11 MPa and 0.08 ± 0.01 MPa to approximately 3.69 ± 0.41 MPa and 0.43 ± 0.01 MPa, respectively, for the PVA/HA/1.5TA hydrogel. The toughness and the compressive elastic modulus of PVA/HA/1.5TA hydrogel also attained 0.86 ± 0.02 MJm−3 and 0.11 ± 0.02 MPa, which was approximately 11 times and 5 times higher than the PVA hydrogel, respectively. The PVA/HA/1.5TA hydrogel also exhibited fatigue resistance abilities. The mechanical properties of the composite hydrogels were improved through the introduction of TA. Furthermore, in vitro PVA/HA/1.5TA hydrogel showed excellent cytocompatibility by promoting cell proliferation in vitro. Scanning electron microscopy analysis indicated that PVA/HA/1.5TA hydrogels provided favorable circumstances for cell adhesion. The aforementioned results also indicate that the composite hydrogels had potential applications in bone tissue engineering, and this study provides a facile method to improve the mechanical properties of PVA hydrogel
Physically crosslinked poly(vinyl alcohol)-based hydrogels for cartilage tissue engineering
Due to the limited self-healing ability of cartilage, cartilage defect repair remains a challenge in clinical treatment. Therefore, there is a need to provide patients with a promising cartilage defect repair strategy. In this study, we have reported an icariin-loaded PVA based biocompatible hydrogel scaffold for cartilage defect repair. The PTGH+Icariin hydrogel was prepared by a simple physical cross-linking method and consisted of polyvinyl alcohol (PVA), tannic acid (TA), gelatin (Gel), hyaluronic acid (HA) and icariin. Inspired by the natural cartilage matrix compositions, the Gel and HA were used to improve the bioactivity and biocompatibility of hydrogel. Furthermore, icariin was introduced to further enhance the hydrogel’s ability for cartilage regeneration. The results showed that PTGH+icariin hydrogel exhibited porous microstructures and tough mechanical properties. In vitro cell experiments confirmed PTGH+Icariin hydrogels could promote chondrocytes proliferation, chondrocytes spreading and chondrocytes migration. Meanwhile, the PTGH+Icariin hydrogel demonstrated the ability to promote the cartilage regeneration in a rat cartilage defect model. In particular, the implantation of PTGH+Icariin hydrogel could facilitate the restoration of motor function in rats. This study will provide a potential approach for the treatment of cartilage defects
The silencing of NREP aggravates OA cartilage damage through the TGF-β1/Smad2/3 pathway in chondrocytes
Background: Osteoarthritis (OA) is a common chronic degenerative joint disease. Due to the limited understanding of its complex pathological mechanism, there is currently no effective treatment that can alleviate or even reverse cartilage damage associated with OA. With improvement in public databases, researchers have successfully identified the key factors involved in the occurrence and development of OA through bioinformatics analysis. The aim of this study was to screen for the differentially expressed genes (DEGs) between the normal and OA cartilage through bioinformatics, and validate the function of the TGF-β1/Smad2/3 pathway-related neuron regeneration related protein (NREP) in the articular cartilage. Methods: The DEGs between the cartilage tissues of OA patients and healthy controls were screened by bioinformatics, and functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The expression levels of the DEG in human and murine OA cartilage was verified by reverse transcription-quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry (IHC). RT-qPCR, Western-blotting, Cell Counting Kit-8(CCK8) and EdU assays were used to evaluate the effects of knocking down NREP in normal chondrocytes, and the molecular mechanisms were investigated by RT-qPCR, Western blotting and IHC. Results: In this study, we identified NREP as a DEG in OA through bioinformatics analysis, and found that NREP was downregulated in the damaged articular cartilage of OA patients and mouse model with surgically-induced OA. In addition, knockdown of NREP in normal chondrocytes reduced their proliferative capacity, which is the pathological basis of OA. At the molecular level, knock-down of NREP inactivated the TGF-β1/Smad2/3 pathway, resulting in the downregulation of the anabolic markers Col2a1 and Sox9, and an increase in the expression of the catabolic markers MMP3 and MMP13. Conclusion: NREP plays a key role in the progression of OA by regulating the TGF-β1/Smad2/3 pathway in chondrocytes, and warrants further study as a potential therapeutic target
TMT quantitative proteomics reveals key proteins relevant to microRNA-1-mediated regulation in osteoarthritis
Abstract Osteoarthritis (OA) is the second-commonest arthritis, but pathogenic and regulatory mechanisms underlying OA remain incompletely understood. Here, we aimed to identify the mechanisms associated with microRNA-1 (miR-1) treatment of OA in rodent OA models using a proteomic approach. First, N = 18 Sprague Dawley (SD) rats underwent sham surgery (n = 6) or ACL transection (n = 12), followed at an interval of one week by randomization of the ACL transection group to intra-articular administration of either 50 µL placebo (control group) or miR-1 agomir, a mimic of endogenous miR-1 (experimental group). After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and immunohistochemically stained for the presence of MMP-13. Second, N = 30 Col2a1-cre-ERT2 /GFPf1/fl -RFP-miR-1 transgenic mice were randomized to intra-articular administration of either placebo (control group, N = 15) or tamoxifen, an inducer of miR-1 expression (experimental group, N = 15), before undergoing surgical disruption of the medial meniscus (DMM) after an interval of five days. After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and underwent differential proteomic analysis. Specifically, tandem mass tagging (TMT) quantitative proteomic analysis was employed to identify inter-group differentially-expressed proteins (DEP), and selected DEPs were validated using real-time quantitative polymerase chain reaction (RT-qPCR) technology. Immunohistochemically-detected MMP-13 expression was significantly lower in the experimental rat group, and proteomic analyses of mouse tissue homogenate demonstrated that of 3526 identified proteins, 345 were differentially expressed (relative up- and down-regulation) in the experimental group. Proteins Fn1, P4ha1, P4ha2, Acan, F2, Col3a1, Fga, Rps29, Rpl34, and Fgg were the *top ten most-connected proteins, implying that miR-1 may regulate an expression network involving these proteins. Of these ten proteins, three were selected for further validation by RT-qPCR: the transcript of Fn1, known to be associated with OA, exhibited relative upregulation in the experimental group, whereas the transcripts of P4ha1 and Acan exhibited relative downregulation. These proteins may thus represent key miR-1 targets during OA-regulatory mechanisms, and may provide additional insights regarding therapeutic mechanisms of miR-1 in context of OA
Additional file 1 of Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic
Supplementary Material
Intra-Articular Injection of Cross-Linked Hyaluronic Acid-Dexamethasone Hydrogel Attenuates Osteoarthritis: An Experimental Study in a Rat Model of Osteoarthritis
Cross-linked hyaluronic acid hydrogel (cHA gel) and dexamethasone (Dex) have been used to treat knee osteoarthritis (OA) in clinical practice owing to their chondroprotective and anti-inflammatory effects, respectively. The aim of the present study was to compare the treatment effects of the cHA gel pre-mixed with/without Dex in a surgery-induced osteoarthritis model in rats. Anterior cruciate ligament transection (ACLT) surgery was performed on the right knee of rats to induce OA. Male 2-month-old Sprague-Dawley rats were randomly divided into five groups (n = 10/per group): (1) ACLT + saline; (2) ACLT + cHA gel; (3) ACLT + cHA-Dex (0.2 mg/mL) gel; (4) ACLT + cHA-Dex (0.5 mg/mL) gel; (5) Sham + saline. Intra-joint injections were performed four weeks after ACLT in the right knee. All animals were euthanized at 12 weeks post-surgery. Cartilage damage and changes in the synovial membrane were assessed by micro X-ray, Indian ink articular surface staining, Safranin-O/Fast Green staining, immunohistochemistry, hematoxylin and eosin staining of the synovial membrane, and quantitative reverse transcription-polymerase chain reaction for changes in gene expression. Micro X-ray revealed that the knee joint treated with the cHA-Dex gel was wider than those treated with cHA gel alone or saline. The cHA-Dex gel group had less Indian ink staining (indicator of cartilage fibrillation) than the cHA gel or saline injection groups. Safranin-O/Fast Green staining indicated that increased proteoglycan staining and less cartilage damage were found in the cHA-Dex gel group compared with the cHA gel or saline injection groups. Quantification of histology findings from saline, cHA gel, cHA-Dex (0.2 mg/mL) gel, cHA-Dex (0.5 mg/mL) gel, and sham groups were 5.84 ± 0.29, 4.50 ± 0.87, 3.00 ± 1.00, 2.00 ± 0.48, and 0.30 ± 0.58 (p < 0.05), respectively. A strong staining of type II collagen was found in both the cHA-Dex gel groups compared with saline group or cHA alone group. Similar result was found for the mRNA level of aggrecan and opposite result for type X collagen. Hematoxylin and eosin staining in the synovial membrane showed less synovial lining cell layers and reduced inflammatory cell infiltration in cHA-Dex gel-treated animals compared with saline or cHA only groups. Altogether, cHA-Dex gel has better chondroprotective and anti-inflammatory effects in rat surgery-induced osteoarthritis than cHA alone
Establishment of rat ankle post-traumatic osteoarthritis model induced by malleolus fracture
Abstract Background Malleolar fracture, which is present in 37–53% of human ankle osteoarthritis (OA), is the most common type of fracture in the ankle joint. In spite of this, no rat animal model has been developed for this type of injury to date. Here, we established a rat ankle post-traumatic OA (PTOA) model induced by malleolar fracture; this model will be useful in ankle OA research. Methods Two-month-old male Sprague Dawley (SD) rats were randomized into 2 groups (n = 19 per group): 1) malleolus articular fracture, dislocation, and immediate reduction on the right joints and 2) malleolus articular fracture on the right ankle. The contralateral ankle joints were used as controls. The fracture and healing processes were confirmed and monitored by radiography. Changes in inflammation were monitored in vivo by fluorescence molecular tomography (FMT). Cartilage damage and changes in expression of OA-related genes were analyzed by histology, immunohistochemistry, Real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) at 8 weeks post-surgery. Results X-rays showed that all fractures were healed at 8 weeks post-surgery. A reproducible, mild to moderate degree of OA cartilage damage with reduced aggrecan was detected by histology in all animals in both groups but there was no significant difference between the two groups. Decreased Col-II and increased Col-X and MMP-13 levels were detected by qPCR, immunohistochemistry, ELISA and FMT from both groups cartilage. Conclusions Malleolus articular fracture alone induces ankle OA with lesions on the central weight bearing area of the tibiotalar joint in rats. This model will provide a reproducible and useful tool for researchers to study ankle OA