23,472 research outputs found

    Continuity of the Solution Maps for Generalized Parametric Set-Valued Ky Fan Inequality Problems

    Get PDF
    Under new assumptions, we provide suffcient conditions for the (upper and lower) semicontinuity and continuity of the solution mappings to a class of generalized parametric set-valued Ky Fan inequality problems in linear metric space. These results extend and improve some known results in the literature (e.g., Gong, 2008; Gong and Yoa, 2008; Chen and Gong, 2010; Li and Fang, 2010). Some examples are given to illustrate our results

    The Temporal and Spectral Characteristics of "Fast Rise and Exponential Decay" Gamma-Ray Burst Pulses

    Full text link
    In this paper we have analyzed the temporal and spectral behavior of 52 Fast Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in long-lag pulses. Different from these long-lag pulses only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least ∼\sim4 parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have correlated properties: (i) long-duration pulses have harder spectra and are less luminous than short-duration pulses; (ii) the more asymmetric the pulses are the steeper the evolutionary curves of the peak energy (EpE_{p}) in the νfν\nu f_{\nu} spectrum within pulse decay phase are. Our statistical results give some constrains on the current GRB models.Comment: 18 pages, 7 figures, accepted for publication in the Astrophysical Journa

    DDI-PULearn: A positive-unlabeled learning method for large-scale prediction of drug-drug interactions

    Full text link
    © 2019 The Author(s). Background: Drug-drug interactions (DDIs) are a major concern in patients' medication. It's unfeasible to identify all potential DDIs using experimental methods which are time-consuming and expensive. Computational methods provide an effective strategy, however, facing challenges due to the lack of experimentally verified negative samples. Results: To address this problem, we propose a novel positive-unlabeled learning method named DDI-PULearn for large-scale drug-drug-interaction predictions. DDI-PULearn first generates seeds of reliable negatives via OCSVM (one-class support vector machine) under a high-recall constraint and via the cosine-similarity based KNN (k-nearest neighbors) as well. Then trained with all the labeled positives (i.e., the validated DDIs) and the generated seed negatives, DDI-PULearn employs an iterative SVM to identify a set of entire reliable negatives from the unlabeled samples (i.e., the unobserved DDIs). Following that, DDI-PULearn represents all the labeled positives and the identified negatives as vectors of abundant drug properties by a similarity-based method. Finally, DDI-PULearn transforms these vectors into a lower-dimensional space via PCA (principal component analysis) and utilizes the compressed vectors as input for binary classifications. The performance of DDI-PULearn is evaluated on simulative prediction for 149,878 possible interactions between 548 drugs, comparing with two baseline methods and five state-of-the-art methods. Related experiment results show that the proposed method for the representation of DDIs characterizes them accurately. DDI-PULearn achieves superior performance owing to the identified reliable negatives, outperforming all other methods significantly. In addition, the predicted novel DDIs suggest that DDI-PULearn is capable to identify novel DDIs. Conclusions: The results demonstrate that positive-unlabeled learning paves a new way to tackle the problem caused by the lack of experimentally verified negatives in the computational prediction of DDIs

    Old drug repositioning and new drug discovery through similarity learning from drug-target joint feature spaces.

    Full text link
    BACKGROUND:Detection of new drug-target interactions by computational algorithms is of crucial value to both old drug repositioning and new drug discovery. Existing machine-learning methods rely only on experimentally validated drug-target interactions (i.e., positive samples) for the predictions. Their performance is severely impeded by the lack of reliable negative samples. RESULTS:We propose a method to construct highly-reliable negative samples for drug target prediction by a pairwise drug-target similarity measurement and OCSVM with a high-recall constraint. On one hand, we measure the pairwise similarity between every two drug-target interactions by combining the chemical similarity between their drugs and the Gene Ontology-based similarity between their targets. Then we calculate the accumulative similarity with all known drug-target interactions for each unobserved drug-target interaction. On the other hand, we obtain the signed distance from OCSVM learned from the known interactions with high recall (≥0.95) for each unobserved drug-target interaction. After normalizing all accumulative similarities and signed distances to the range [0,1], we compute the score for each unobserved drug-target interaction via averaging its accumulative similarity and signed distance. Unobserved interactions with lower scores are preferentially served as reliable negative samples for the classification algorithms. The performance of the proposed method is evaluated on the interaction data between 1094 drugs and 1556 target proteins. Extensive comparison experiments using four classical classifiers and one domain predictive method demonstrate the superior performance of the proposed method. A better decision boundary has been learned from the constructed reliable negative samples. CONCLUSIONS:Proper construction of highly-reliable negative samples can help the classification models learn a clear decision boundary which contributes to the performance improvement
    • …
    corecore