6,288 research outputs found

    Topological gauge theory, symmetry fractionalization, and classification of symmetry-enriched topological phases in three dimensions

    Full text link
    Symmetry plays a crucial role in enriching topological phases of matter. Phases with intrinsic topological order that are symmetric are called symmetry-enriched topological phases (SET). In this paper, we focus on SETs in three spatial dimensions, where the intrinsic topological orders are described by Abelian gauge theory and the symmetry groups are also Abelian. As a series work of our previous research [Phys. Rev. B 94, 245120 (2016); (arXiv:1609.00985)], we study these topological phases described by twisted gauge theories with global symmetry and consider all possible topologically inequivalent "charge matrices". Within each equivalence class, there is a unique pattern of symmetry fractionalization on both point-like and string-like topological excitations. In this way, we classify Abelian topological order enriched by Abelian symmetry within our field-theoretic approach. To illustrate, we concretely calculate many representative examples of SETs and discuss future directions

    Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño.

    Get PDF
    In March 2017, sea surface temperatures off Peru rose above 28 °C, causing torrential rains that affected the lives of millions of people. This coastal warming is highly unusual in that it took place with a weak La Niña state. Observations and ocean model experiments show that the downwelling Kelvin waves caused by strong westerly wind events over the equatorial Pacific, together with anomalous northerly coastal winds, are important. Atmospheric model experiments further show the anomalous coastal winds are forced by the coastal warming. Taken together, these results indicate a positive feedback off Peru between the coastal warming, atmospheric deep convection, and the coastal winds. These coupled processes provide predictability. Indeed, initialized on as early as 1 February 2017, seasonal prediction models captured the extreme rainfall event. Climate model projections indicate that the frequency of extreme coastal El Niño will increase under global warming
    • …
    corecore