47,692 research outputs found
Space-Based Gravity Detector for a Space Laboratory
A space-based superconducting gravitational low-frequency wave detector is
considered. Sensitivity of the detector is sufficient to use the detector as a
partner of other contemporary low-frequency detectors like LIGO and LISA. This
device can also be very useful for experimental study of other effects
predicted by theories of gravitation.Comment: 4 pages, 4 figures
Field-effect mobility enhanced by tuning the Fermi level into the band gap of Bi2Se3
By eliminating normal fabrication processes, we preserve the bulk insulating
state of calcium-doped Bi2Se3 single crystals in suspended nanodevices, as
indicated by the activated temperature dependence of the resistivity at low
temperatures. We perform low-energy electron beam irradiation (<16 keV) and
electrostatic gating to control the carrier density and therefore the Fermi
level position in the nanodevices. In slightly p-doped Bi2-xCaxSe3 devices,
continuous tuning of the Fermi level from the bulk valence band to the band-gap
reveals dramatic enhancement (> a factor of 10) in the field-effect mobility,
which suggests suppressed backscattering expected for the Dirac fermion surface
states in the gap of topological insulators
Crystal Growth in Fluid Flow: Nonlinear Response Effects
We investigate crystal-growth kinetics in the presence of strong shear flow
in the liquid, using molecular-dynamics simulations of a binary-alloy model.
Close to the equilibrium melting point, shear flow always suppresses the growth
of the crystal-liquid interface. For lower temperatures, we find that the
growth velocity of the crystal depends non-monotonically on the shear rate.
Slow enough flow enhances the crystal growth, due to an increased particle
mobility in the liquid. Stronger flow causes a growth regime that is nearly
temperature-independent, in striking contrast to what one expects from the
thermodynamic and equilibrium kinetic properties of the system, which both
depend strongly on temperature. We rationalize these effects of flow on crystal
growth as resulting from the nonlinear response of the fluid to strong shearing
forces.Comment: to appear in Phys. Rev. Material
Gravity Waves as a Probe of Hubble Expansion Rate During An Electroweak Scale Phase Transition
Just as big bang nucleosynthesis allows us to probe the expansion rate when
the temperature of the universe was around 1 MeV, the measurement of gravity
waves from electroweak scale first order phase transitions may allow us to
probe the expansion rate when the temperature of the universe was at the
electroweak scale. We compute the simple transformation rule for the gravity
wave spectrum under the scaling transformation of the Hubble expansion rate. We
then apply this directly to the scenario of quintessence kination domination
and show how gravity wave spectra would shift relative to LISA and BBO
projected sensitivities.Comment: 28 pages, 2 figures
Active role of elongation factor G in maintaining the mRNA reading frame during translation.
During translation, the ribosome moves along the mRNA one codon at a time with the help of elongation factor G (EF-G). Spontaneous changes in the translational reading frame are extremely rare, yet how the precise triplet-wise step is maintained is not clear. Here, we show that the ribosome is prone to spontaneous frameshifting on mRNA slippery sequences, whereas EF-G restricts frameshifting. EF-G helps to maintain the mRNA reading frame by guiding the A-site transfer RNA during translocation due to specific interactions with the tip of EF-G domain 4. Furthermore, EF-G accelerates ribosome rearrangements that restore the ribosome's control over the codon-anticodon interaction at the end of the movement. Our data explain how the mRNA reading frame is maintained during translation
Experimental Demonstration of Quantum State Multi-meter and One-qubit Fingerprinting in a Single Quantum Device
We experimentally demonstrate in NMR a quantum interferometric multi-meter
for extracting certain properties of unknown quantum states without resource to
quantum tomography. It can perform direct state determinations,
eigenvalue/eigenvector estimations, purity tests of a quantum system, as well
as the overlap of any two unknown quantum states. Using the same device, we
also demonstrate one-qubit quantum fingerprinting
- âŠ