37 research outputs found

    Quantification of Climate Changes and Human Activities That Impact Runoff in the Taihu Lake Basin, China

    Get PDF
    Although a fragile climate region, the Taihu Lake Basin is among the most developed regions in China and is subjected to intense anthropogenic interference. In this basin, water resources encounter major challenges (e.g., floods, typhoons, and water pollution). In this study, the impacts of climate changes and human activities on hydrological processes were estimated to aid water resource management in developed regions in China. The Mann-Kendall test and cumulative anomaly curve were applied to detect the turning points in the runoff series. The year of 1982 divides the study period (1956~2008) into a baseline period (1956~1981) and a modified period (1982~2008). The double mass curve method and the hydrological sensitivity method based on the Budyko framework were applied to quantitatively attribute the runoff variation to climate changes and human activities. The results demonstrated that human activities are the dominant driving force of runoff variations in the basin, with a contribution of 83~89%; climate changes contributed to 11~17% of the variations. Moreover, the subregions of the basin indicated that humans severely disturbed the runoff variation, with contributions as high as 95~97%

    Modelling the Vegetation Response to Climate Changes in the Yarlung Zangbo River Basin Using Random Forest

    Get PDF
    Vegetation coverage variation may influence watershed water balance and water resource availability. Yarlung Zangbo River, the longest river on the Tibetan Plateau, has high spatial heterogeneity in vegetation coverage and is the main freshwater resource of local residents and downstream countries. In this study, we proposed a model based on random forest (RF) to predict the Normalized Difference Vegetation Index (NDVI) of the Yarlung Zangbo River Basin and explore its relationship with climatic factors. High-resolution datasets of NDVI and monthly meteorological observation data from 2000 to 2015 were used to calibrate and validate the proposed model. The proposed model was then compared with artificial neural network and support vector machine models, and principal component analysis and partial correlation analysis were also used for predictor selection of artificial neural network and support vector machine models for comparative study. The results show that RF had the highest model efficiency among the compared models. The Nash–Sutcliffe coefficients of the proposed model in the calibration period and verification period were all higher than 0.8 for the five subzones; this indicated that the proposed model can successfully simulate the relationship between the NDVI and climatic factors. By using built-in variable importance evaluation, RF chose appropriate predictor combinations without principle component analysis or partial correlation analysis. Our research is valuable because it can be integrated into water resource management and elucidates ecological processes in Yarlung Zangbo River Basin

    Seawater desalination in China: an overview

    No full text
    China, especially its coastal provinces, is facing water shortage issues, restricting its further development. To tackle the serious imbalance between water resource supply and demand, China has strived to develop alternative water resources to combat the water crisis, among which seawater desalination plays a major role. This paper reviews the current situation of utilization of desalinated seawater in China and includes: (1) a history of seawater desalination classified into three phases; (2) analysis of utilization sectors, geographic distribution and employed technologies of the desalination plants; (3) summaries of the policies, regulations and technological standards governing seawater desalination; (4) proposals for existing problems and some suggested measures regarding the current condition of seawater desalination; and (5) the seawater desalination programs in Tianjin and Zhoushan are presented as two representative examples. China's seawater desalination experience can provide some guidance for other countries facing similar water resource situations

    Simulation of Summer Hourly Stream Flow by Applying TOPMODEL and Two Routing Algorithms to the Sparsely Gauged Lhasa River Basin in China

    Get PDF
    This paper develops a new routing algorithm for improving simulation capacity of physically-based hydrological models applied to sparsely-gauged river basins. The study area is the Lhasa River basin, a large plateau basin with an area of 26,225 km2 in southwest China. In the basin, observations from three hydrological stations are available, and the observed hourly rainfall and summer stream flow data (12 June to 30 September) for the period of 1998–2000 obtained from the three stations were used. TOPMODEL, with its original routing algorithm, which is a distance-related delay function, was applied to the Lhasa River basin. To improve the routing algorithm using a unit hydrograph function and a linear reservoir method, this study proposed a new algorithm; the results revealed that the new algorithm improved the simulation of the variation of hourly stream flow. In addition, to evaluate the influence of rainfall spatial variation on runoff generation, observed rainfall series from the three gauges were used to simulate runoff individually, and it was found that there are significant differences among the three simulated hourly stream flow series

    The research status of flash flood warning in China

    No full text
    The article discusses from the disaster mechanism of flash flood to the current situation of early warning system. The formation of flash flood is closely related to rainfall intensity, underlying surface conditions and antecedent soil moisture content, and analysis of the physical process of flash flood disasters is crucial for the study of flash flood warning. Flash flood disaster warning indexes are mainly divided into two types: rainfall warning index and water level warning index. Data-driven statistical induction method and hydro-hydraulic methods based on physical mechanisms are used to determine rainfall warning index; The water level warning index can be directly determined by the upstream and downstream corresponding water level method or by the disaster water level. And summed up the current situation and development trend of China's flash flood warning research

    Evaluating Different Methods for Determining the Velocity-Dip Position over the Entire Cross Section and at the Centerline of a Rectangular Open Channel

    No full text
    The velocity profile of an open channel is an important research topic in the context of open channel hydraulics; in particular, the velocity-dip position has drawn the attention of hydraulic scientists. In this study, analytical expressions for the velocity-dip position over the entire cross section and at the centerline of a rectangular open channel are derived by adopting probability methods based on the Tsallis and general index entropy theories. Two kinds of derived entropy-based expressions have the same mathematical form as a function of the lateral distance from the sidewall of the channel or of the aspect ratio of the channel. Furthermore, for the velocity-dip position over the entire cross section of the rectangular open channel, the derived expressions are compared with each other, as well as with two existing deterministic models and the existing Shannon entropy-based expression, using fifteen experimental datasets from the literature. An error analysis shows that the model of Yang et al. and the Tsallis entropy-based expression predict the lateral distribution of the velocity-dip position better than the other proposed models. For the velocity-dip position at the centerline of the rectangular open channel, six existing conventional models, the derived Tsallis and general index entropy-based expressions, and the existing Shannon entropy-based models are tested against twenty-one experimental datasets from the literature. The results show that the model of Kundu and the Shannon entropy-based expression have superior prediction accuracy with respect to experimental data compared with other models. With the exception of these models, the Tsallis entropy-based expression has the highest correlation coefficient value and the lowest root mean square error value for experimental data among the other models. This study indicates that the Tsallis entropy could be a good addition to existing deterministic models for predicting the lateral distribution of the velocity-dip position of rectangular open channel flow. This work also shows the potential of entropy-based expressions, the Shannon entropy and the Tsallis entropy in particular, to predict the velocity-dip position at the centerline of both narrow and wide rectangular open channels

    Reservoir storage curve estimation based on remote sensing data

    No full text

    An Expression for Velocity Lag in Sediment-Laden Open-Channel Flows Based on Tsallis Entropy Together with the Principle of Maximum Entropy

    No full text
    In the context of river dynamics, some experimental results have shown that particle velocity is different from fluid velocity along the stream-wise direction for uniform sediment-laden open-channel flows; this velocity difference has been termed velocity lag in the literature. In this study, an analytical expression for estimating the velocity lag in open-channel flows was derived based on the Tsallis entropy theory together with the principle of maximum entropy. The derived expression represents the velocity lag as a function of a non-dimensional entropy parameter depending on the average and maximum values of velocity lag from experimental measurements. The derived expression was tested against twenty-two experimental datasets collected from the literature with three deterministic models and the developed Shannon entropy-based model. The Tsallis entropy-based model agreed better with the experimental datasets than the deterministic models for eighteen out of the twenty-two total real cases, and the prediction accuracy for the eighteen experimental datasets was comparable to that of the developed Shannon entropy-based model (the Tsallis entropy-based expression agreed slightly better than the Shannon entropy-based model for twelve out of eighteen test cases, whereas for the other six test cases, the Shannon entropy-based model had a slightly higher prediction accuracy). Finally, the effects of the friction velocity of the flow, the particle diameter, and the particles’ specific gravity on the velocity lag were analyzed based on the Tsallis entropy-based model. This study shows the potential of the Tsallis entropy theory together with the principle of maximum entropy to predict the stream-wise velocity lag between a particle and the surrounding fluid in sediment-laden open-channel flows
    corecore