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Although a fragile climate region, the Taihu Lake Basin is among the most developed regions in China and is subjected to
intense anthropogenic interference. In this basin, water resources encounter major challenges (e.g., floods, typhoons, and water
pollution). In this study, the impacts of climate changes and human activities on hydrological processes were estimated to aid
water resource management in developed regions in China. The Mann-Kendall test and cumulative anomaly curve were applied
to detect the turning points in the runoff series. The year of 1982 divides the study period (1956∼2008) into a baseline period
(1956∼1981) and a modified period (1982∼2008). The double mass curve method and the hydrological sensitivity method based on
the Budyko framework were applied to quantitatively attribute the runoff variation to climate changes and human activities. The
results demonstrated that human activities are the dominant driving force of runoff variations in the basin, with a contribution
of 83∼89%; climate changes contributed to 11∼17% of the variations. Moreover, the subregions of the basin indicated that humans
severely disturbed the runoff variation, with contributions as high as 95∼97%.

1. Introduction

Extreme hydrological events, such as floods and droughts,
occur frequently [1, 2]. Most hydrological disturbances
in basins are due to climatic and anthropogenic factors.
Regional climate changes mainly influence precipitation and
evapotranspiration, leading to an increase or decrease in
regional water resources. Under climate change, complex
hydrological uncertainties enhance the risk of disaster [3].
With rapid social and economic development, the intensity of
human activities is increasing in most regions and is altering
hydrological processes [4–7]. The dual impacts of climate
changes and human activities alter the hydrological cycle and
introduce water issues.There aremany studies that attempt to
separate the causes and effects of climate changes and human
effects [8, 9]. In some basins, climate changes play a key role in
hydrological variations [10], while human activities dominate
in the RedRiver Basin [11] and the RenoRiver catchment [12].
Actually, the effects of climate changes and human activities
interact, butmost research simply assumes that the factors are
independent.

As a typical region that experiences climatic impacts and
intense human interference, the Taihu Lake Basin was chosen
as a study case. Climate factors, such as El Niño-Southern
Oscillation (ENSO) and the East Asian monsoon, lead to a
fluctuating climate in the basin [13]. Considering the strong
urbanization, human activities also increase the flood risk
[14]. Because of the rapid social and economic development,
the demand on water resources is increasing. Therefore,
attributing hydrological modifications to these driving forces
will have practical significance for the sustainable manage-
ment of water resources. In this study, the hydrological
changes based on trends and turning points were revealed
in the Taihu Lake Basin. The impacts of climate changes and
human activities on hydrological processes were quantified.

2. Study Area and Materials

The Taihu Lake Basin (Figure 1), with an area of 36 895 km2,
is located in the core region of the Yangtze River Delta. The
basin has a typical subtropical monsoon climate. The water
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Figure 1: Taihu Lake Basin.

resource carrying capacity is quite low under climate changes.
Moreover, the basin is one of the most developed areas in
China. Many artificial river systems and hydraulic projects
have been constructed. The underlying surface of the basin
has been remarkably altered by human activities.

The annual mean precipitation of the Taihu Lake Basin
is approximately 1200mm. However, the rainfall is concen-
trated in the flood season (from May to September). The
annual mean runoff is nearly 430mm. In this study, the Taihu
Lake Basin was divided into four zones (the administrative
units of the Taihu Basin Authority, Ministry of Water
Resources, China): the Wuyang Zone (WYZ), the Huxi and
Taihu Zone (HTZ), the Hangjiahu Zone (HJHZ), and the
Huangpujiang Zone (HPJZ).The hydrological characteristics
of the four zones are listed in Table 1. The daily precipitation,
temperature, humidity, wind speed, and sunshine duration
of 11 meteorological stations (see Figure 1) in the basin from
1956 to 2008 were collected from the China Meteorological
Data Sharing Service System (http://data.cma.cn/). The daily
potential evapotranspiration was estimated by the Penman-
Monteith method [15] based on the meteorological data
mentioned above. The annual precipitation and potential
evapotranspiration were calculated and then interpolated by
the inverse distance weighted method in each zone and the
entire basin.The annual runoff of the basin and the four zones
during 1956∼2008was provided by theTaihuBasinAuthority,
Ministry of Water Resources, China, respectively.

3. Methods

3.1. Trend and Turning Point Analysis. The cumulative depar-
ture curve was used to analyze the trends in the hydrological
time series and to detect the preliminary turning points [13].
Then, the Mann-Kendall method [16–18] was employed to
verify the turning points. The turning point was applied
to divide the data series into two periods: the baseline
period and the modified period. In the baseline period, the
status or condition of the basin is assumed natural, without
significant human interference (i.e., the reference period for
the modified period). In contrast, human activities in the
modified period are very apparent.

The departures of the cumulative departure curve are
measured as follows [13]:
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− 𝑥, (1)

where 𝑥 is the time series. The extreme values of the
cumulative departure curves are probably the turning points.
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Table 1: Hydrological characteristics of the Taihu Lake Basin and its zones during 1956∼2008.

Zone Annual runoff
(mm)

Annual precipitation
(mm)

Annual potential
evapotranspiration

(mm)
Hangjiahu Zone 451.7 1238.8 868.0
Huangpujiang Zone 395.2 1164.9 890.7
Wuyang Zone 373.0 1133.9 881.6
Huxi and Taihu Zone 463.8 1226.6 856.3
Taihu Basin 429.7 1199.5 870.3
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If |𝑈𝐹
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| > 𝛼 for a given significance level 𝛼, then the

statistical series exhibits an obvious trend. Then, the process
was repeated by the inverse time series (𝑥
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3.2. Double Mass Curve Method. The runoff variation was
attributed to impacts of both climate changes and human
activities.The total runoff variation was calculated as follows:

Δ𝑄

tot
= Δ𝑄

human
+ Δ𝑄

clim
, (5)

where Δ𝑄clim and Δ𝑄human are the runoff variation induced
by climate changes and human activities, respectively. Δ𝑄tot
is the total runoff variation, which could also be calculated as
follows:
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where𝑄 is the annualmean runoff. Subscripts 1 and 2 indicate
the baseline period and modified period, respectively. Then,
the contributions of climate changes and human activities to
runoff variations could be estimated by
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where 𝑐clim and 𝑐human represent the contribution of climate
changes and human activities, respectively.

The double mass curve method [19] employs linear
regression analysis of hydrological time series. The rela-
tionship between the cumulative runoff and cumulative
precipitation in the baseline period is analyzed by

∑𝑄 = 𝑘∑𝑃 + 𝑏, (8)

where 𝑄 and 𝑃 are the runoff and precipitation, respectively.
𝑘 and 𝑏 are two parameters. Then, the regression equation
is used to simulate the runoff in the modified period.
Since the climate factor, precipitation, is the same for both
the simulated and measured runoff, which eliminates the
influence of climate changes, the difference between the
mean simulated and measured runoff is the runoff variation
induced by human activities:

Δ𝑄
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= 𝑄

󸀠

2
− 𝑄

2
,

(9)

where 𝑄󸀠 is the annual mean simulated runoff. Then, the
runoff variation induced by climate change is the difference
between the total runoff variation and the runoff variation
induced by human activities.

3.3. Hydrological Sensitivity Method Based on the Budyko
Framework. The hydrological sensitivity method could be
applied to estimate the impact of climate changes on hydro-
logical processes based on the water balance [20, 21]:

𝑃 = 𝐸 + 𝑄 + Δ𝑆, (10)

where 𝐸 is the evapotranspiration and Δ𝑆 is the variation
in the water storage in the basin, which can be neglected
for 5∼10 years. Then, (10) could be transformed based on
the relationship between evapotranspiration and potential
evapotranspiration [22]:
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where 𝐸
0
is the potential evapotranspiration and 𝑛 is a

landscape parameter; 𝑥 indicates the dryness index, that
is, 𝐸
0
/𝑃. Then, the runoff variation induced by the climate

changes could be calculated as follows [23]:
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where Δ𝑃 and Δ𝐸
0
are the changes in the precipitation

and potential evapotranspiration, respectively; 𝛽 and 𝛾 are
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the sensitivity coefficient of runoff to precipitation and poten-
tial evapotranspiration, respectively:
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Similarly, for the hydrological sensitivity method, the runoff
variation induced by human activities is the difference
between the total runoff variation and the runoff variation
induced by climate change.

4. Results and Discussion

4.1. Hydrological Regimes. First, precipitation and runoff data
in the Taihu Lake Basin were analyzed. In Figure 2(a), the
cumulative departure curve of the precipitation tended to
decrease until 1979 and then increased.Therefore, 1979 could
be the turning point for precipitation. Then, the Mann-
Kendall test for precipitation showed a turning point in 1979
and verified the performance of the cumulative departure
curve (Figure 2(b)). Similarly, the cumulative departure curve
and the Mann-Kendall test of runoff both illustrated the
turning point for runoff in 1982 (Figure 3).

The inconsistency in the turning points for precipitation
and runoff could be attributed to both climate changes and
human activities. Here, the turning point of runoff divided
the time series into the baseline period (1956∼1981) and the
modified period (1982∼2008). In fact, the open policy of
China exerted at the end of 1970s accelerated social and eco-
nomic development, particularly in the Yangtze River Delta.
Intense human activities began in the early 1980s in the most
basins of China, including the Taihu Lake Basin. Moreover,
the river system changed significantly, and the number of
lakes decreased after the 1980s. The land use/cover distinctly
changed in the 1980s due to social and economic development
[24]. Thus, the turning point of 1982 was reasonable.

4.2. Assessment of the Causes of the Runoff Variation.
The runoff, precipitation, and potential evapotranspiration
increased by 46.7mm, 51.4mm, and 106.9mm in the modi-
fied period compared with the baseline period. In Figure 4,
the curve of the cumulative precipitation and potential
evapotranspiration deviated in 1982, which also verified the
reliability of the division for the baseline andmodified period.
The relationship in the baseline period was ∑𝑄 = 0.34 ∗
∑𝑃 + 320.77, which was applied to simulate the runoff in
the modified period. In the double mass curve method, the
results showed that human activities changed the runoff by
41.7mm in the Taihu Lake Basin and contributed to 89% of
the total runoff variation; climate changes contributed to 11%
of the variation.

For the hydrological sensitivity method, the parameter
𝑛 was set to 0.5 [22]; then, 𝛽 and 𝛾 were computed as 0.80
and −0.46, respectively; 8.2mm of the runoff variation was
induced by climate changes. Consequently, the influences of
the climate changes and human activities accounted for 18%
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Figure 2: Turning points of precipitation.

and 82%, respectively, of the total runoff variation (Table 2).
The error in the estimations by the doublemass curvemethod
and hydrological sensitivity method was 3.2mm, with a
deviation of 7%. Because of the relatively small error, the
estimations could be used to verify the results. Therefore,
11∼18% and 82∼89% of the runoff variation were attributed to
impacts of climate changes and human activities, respectively.

Previous studies reported that human activities played a
slightly dominant role upstream of the Taihu Lake Basin and
Xitiaoxi River Basin [13, 25]. In this study, the results showed
that human activities played an absolutely dominant role in
the runoff variation in the Taihu Lake Basin. Specifically, the
urbanization increased the water stage, and the hydrological
processes significantly responded to the change in the land
use/cover in the basin [14].The river system was disrupted by
intense human activities, and many hydraulic projects were
constructed. Climate factors such as ENSO played a role in
the precipitation in the basin. Moreover, the instability of the
climate variability increases the flooding and rainfall in the
basin [24].
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Table 2: Assessment of climate changes and human activities that impact the runoff variation in the Taihu Lake Basin.

Methods
Runoff variation
induced by climate

changes
(mm)

Contribution of
climate changes

(%)

Runoff variation
induced by human

activities
(mm)

Contribution of
human activities

(%)

Double mass curve method 5.0 11 41.7 89
Hydrological sensitivity method 8.2 18 38.5 82
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Figure 3: Turning points of runoff.

The precipitation inHPJZ, HJHZ,WYZ, andHTZ during
the modified period increased by 7.9%, 6.4%, 5.2%, and 2.3%,
respectively, compared with the baseline period. The poten-
tial evapotranspiration changed the most in HPJZ (16.8%);
in the other three zones, the change was approximately 12%.
The runoff variation in HPJZ, WYZ, and HJHZ was 30.1%,
27.8%, and 20.2%, respectively, but it only varied by 1.3% in
HTZ (Figure 5). The relationship between the cumulative
precipitation and runoff in the baseline period is shown in
Table 3. In HTZ, HJHZ, HPJZ, and WYZ, human activities
contributed to 76∼79%, 83∼84%, 84∼92%, and 95∼97%,
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respectively, of the runoff variation. The impact of climate
changes in the four zones was less than 24% (Figure 6).

In the four zones, human interferences remarkably dom-
inated the runoff variation. Human activities in WYZ were
most intense, with an impact greater than 95%; the lowest
impact occurred in HTZ. The relationship between runoff
and precipitation was closer in HTZ than in other three
regions (Table 3). The largest coefficient of the double
mass curve method and the hydrological sensitivity method
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Table 3: The relationship between the cumulative precipitation and runoff according to the two methods in the four zones.

Zone Equations of the double mass curve method Equations of the hydrological sensitivity method
Hangjiahu Zone ∑𝑄 = 0.33 ∗∑𝑃 + 323.3 Δ𝑄 = 0.81 ∗ Δ𝑃 − 0.47 ∗ Δ𝐸

0

Huangpujiang Zone ∑𝑄 = 0.30 ∗∑𝑃 + 250.2 Δ𝑄 = 0.79 ∗ Δ𝑃 − 0.44 ∗ Δ𝐸

0

Wuyang Zone ∑𝑄 = 0.29 ∗∑𝑃 + 296.1 Δ𝑄 = 0.78 ∗ Δ𝑃 − 0.43 ∗ Δ𝐸

0

Huxi and Taihu Zone ∑𝑄 = 0.37 ∗∑𝑃 + 358.6 Δ𝑄 = 0.88 ∗ Δ𝑃 − 0.23 ∗ Δ𝐸

0

Human activities
83∼84%

Climate change
16∼17%

(a) Hangjiahu Zone

Human activities
84∼92%

Climate change
8∼16%

(b) Huangpujiang Zone

Human activities
95∼97%

Climate change
3∼5%

(c) Wuyang Zone

Human activities
76∼79%

Climate change
21∼24%

(d) Huxi and Taihu Zone

Figure 6: Quantitative assessments of the attribution to runoff variations in the four zones.

occurred inHTZ,while the smallest values occurred inWYZ.
In fact, the main land cover was water bodies in HTZ, where
the urbanization was weakest. However, WYZ had the most
intense urbanization [26], which corresponded to the greatest
human activities.

The limitations of this study include uncertainties and
the simple hypothesis of an independent relation between
climate changes and human activities. The general impacts
of climate changes and human activities were assessed. The
specific driving forces that impact the runoff variation will be
analyzed in the future.

5. Conclusion

The Taihu Lake Basin suffers disturbances from climate
changes and human activities. The detection and identifica-
tion of runoff variations are significant for countering water
resources issues in the basin. The study aims to quantify the
driving forces of runoff variations in the Taihu Lake Basin.
The conclusions can be summarized as follows:

(1) Based on the cumulative departure method and
Mann-Kendall method, the runoff in the Taihu Lake
Basin abruptly changed in 1982. Thus, 1982 was con-
sidered the turning point between the baseline period
(1956∼1981) and the modified period (1982∼2008).

(2) The impacts of climate changes and human activities
were estimated by the double mass curve method
and the hydrological sensitivity method; these factors
contributed to 11∼18% and 82∼89%, respectively, of
the runoff variation in the basin. Human activities
significantly dominated in the four zones, among
which WYZ had the most intense human activities

(95∼97% contribution rate).The intense urbanization
and remarkable land use/cover change in the Taihu
Lake Basin could be the main human activities that
contribute to hydrological alterations.
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