833 research outputs found

    Systematic analysis of early aftershocks of the 2004 Mw6.0 Parkfield earthquake detected by a matched filter technique

    Get PDF
    Issued as final reportUnited States. Dept. of the Interio

    General Approach To Compute Phosphorescent OLED Efficiency

    Full text link
    Phosphorescent organic light-emitting diodes (PhOLEDs) are widely used in the display industry. In PhOLEDs, cyclometalated Ir(III) complexes are the most widespread triplet emitter dopants to attain red, e.g., Ir(piq)3 (piq = 1-phenylisoquinoline), and green, e.g., Ir(ppy)3 (ppy = 2-phenylpyridine), emissions, whereas obtaining operative deep-blue emitters is still one of the major challenges. When designing new emitters, two main characteristics besides colors should be targeted: high photostability and large photoluminescence efficiencies. To date, these are very often optimized experimentally in a trial-and-error manner. Instead, accurate predictive tools would be highly desirable. In this contribution, we present a general approach for computing the photoluminescence lifetimes and efficiencies of Ir(III) complexes by considering all possible competing excited-state deactivation processes and importantly explicitly including the strongly temperature-dependent ones. This approach is based on the combination of state-of-the-art quantum chemical calculations and excited-state decay rate formalism with kinetic modeling, which is shown to be an efficient and reliable approach for a broad palette of Ir(III) complexes, i.e., from yellow/orange to deep-blue emitters

    Structure, seismicity, and stress along the San Andreas Fault near SAFOD

    Get PDF
    Issued as final reportThe San Andreas Fault Observatory at Depth (SAFOD) has yielded significant new insights into the nature of the San Andreas fault (SAF). In particular, the recovery of ~ 40 meters of core containing two meters-thick zones of fault gouge and adjacent zones of damage and alteration provides a unique opportunity to characterize the physical and chemical properties of fault zone rocks from a depth where earthquakes occur, although these samples are interpreted to come from a creeping, not seismogenic, part of the fault (Hickman et al., 2007, 2008). We propose to improve our understanding of the context within which these fault zone samples existed in-situ by utilizing arrival times of fault zone head waves (FZHW's) and the associated direct-wave secondary arrivals (DWSA's) to (1) improve the seismic tomography image of the SAF at relatively fine scale, and (2) improve absolute location estimates for earthquakes in the region around SAFOD and in particular the drilling target earthquakes. These two tasks have interrelated goals. Primary among them is to characterize in detail the seismogenic structures on which the earthquakes near SAFOD occur and relate those structures to the borehole and core observations. There is a general consensus that the shallower of the two gouge zones is related to the fault strand along which the so-called "Hawaii" target earthquakes occur. Our improved absolute earthquake locations will either help support or refute this interpretation.United States. Department of the Interio

    Some results for a classs of subordinate functions

    Get PDF
    In this article, a class of subordinate functions is introduced. The bounds of the coefficients of the functions in this class are investigated

    Stress- and structure-induced anisotropy in Southern California from two-decades of shear-wave splitting measurements

    Get PDF
    We measure shear wave splitting (SWS) parameters (i.e., fast direction and delay time) using 330,000 local earthquakes recorded by more than 400 stations of the Southern California Seismic Network (1995–2014). The resulting 232,000 SWS measurements (90,000 high-quality ones) provide a uniform and comprehensive database of local SWS measurements in Southern California. The fast directions at many stations are consistent with regional maximum compressional stress σ_(Hmax). However, several regions show clear deviations from the σ_(Hmax) directions. These include linear sections along the San Andreas Fault and the Santa Ynez Fault, geological blocks NW to the Los Angeles Basin, regions around the San Jacinto Fault, the Peninsular Ranges near San Diego, and the Coso volcanic field. These complex patterns show that regional stresses and active faults cannot adequately explain the upper crustal anisotropy in Southern California. Other types of local structures, such as local rock types or tectonic features, also play significant roles
    corecore