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Abstract we measure shear wave splitting (SWS) parameters (i.e., fast direction and delay time) using
330,000 local earthquakes recorded by more than 400 stations of the Southern California Seismic Network
(1995-2014). The resulting 232,000 SWS measurements (90,000 high-quality ones) provide a uniform and
comprehensive database of local SWS measurements in Southern California. The fast directions at many
stations are consistent with regional maximum compressional stress opymax. However, several regions show
clear deviations from the oymnax directions. These include linear sections along the San Andreas Fault and the
Santa Ynez Fault, geological blocks NW to the Los Angeles Basin, regions around the San Jacinto Fault, the
Peninsular Ranges near San Diego, and the Coso volcanic field. These complex patterns show that regional
stresses and active faults cannot adequately explain the upper crustal anisotropy in Southern California.
Other types of local structures, such as local rock types or tectonic features, also play significant roles.

1. Introduction

Seismic anisotropy in the upper crust can cause shear waves into two orthogonally polarized waves traveling
at different velocities and arrive at slightly different times, a phenomenon generally called shear wave split-
ting (SWS). Crustal anisotropy can be explained by preferential opening of fluid-filled cracks under maximum
horizontal compressive stress (oHmayx), also known as stress-induced anisotropy (Crampin et al., 1978; Leary
etal,, 1990; Nur & Simmons, 1969). However, studies associated with large strike-slip faults usually found that
fast directions observed at near-fault stations were generally parallel to the local fault strike (e.g., Audet, 2014;
Boness & Zoback, 2006; Cochran et al., 2003; Peng & Ben-Zion, 2004; Rasendra et al., 2014; Zhang & Schwartz,
1994). In addition, preferential mineral alignment, remnant features of paleostress, and sedimentary layering
can also cause crustal anisotropy (Alford, 1986; Aster & Shearer, 1992; Sayers, 1994). Anisotropy associated
with faults, mineral alignment, and sedimentation structures is generally categorized as structure-induced
anisotropy. In some cases, due to different spatial sampling, a mixture of mechanisms on a single station
can be observed (e.g., Cochran et al., 2003; Peng & Ben-Zion, 2004).

Southern California is an important region for SWS studies, mostly due to its structural complexity, highly
active seismicity, and dense seismic instrumentation (Figure 1). Many SWS studies have been conducted in
this region at various scales (Aster et al., 1990; Crampin et al., 1990; Li et al., 1994; Boness & Zoback, 2006;
Li et al., 2015; Paulssen, 2004; Yang et al., 2011). These studies generally found that fast directions in
Southern California are mainly controlled by regional stress, while some stations near major faults are
controlled by fault structures. (e.g., Boness & Zoback, 2006). Li et al. (2015) observed varying fast directions
across the San Jacinto Fault Zone, likely associated with heterogeneous rock damage from tectonic loading
and earthquake rupture. However, these studies utilized different methods and data sets, resulting in hetero-
geneous SWS measurements. This may cause inconsistencies when comparing among different results.

In this paper we systematically measure SWS parameters of 330,000 local earthquakes recorded by Southern
California Seismic Network (SCSN) in two decades (1995-2014). Our purpose is to provide a uniform and a
complete database of local SWS measurements in Southern California. The measurements are obtained via
fully automatic procedure and evaluated with quantitative criteria. Hence, our results are fully reproducible.
The selected high-quality measurements are used to analyze spatial variations of shear wave anisotropy at
local and regional scales. The patterns are then compared with oymax to identify regions with stress- or
structure-induced anisotropy. Finally, we apply a spatial average method to obtain maps of anisotropy
strength and fast direction in Southern California.
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Figure 1. Seismicity (gray dots), the San Andreas Fault system (gray lines), and Southern California Seismic Network (cyan triangles). SGF: San Gabriel Fault, SMF:
Santa Monica Fault, CP: Cajon Pass, SBM: Santa Bernardino Mountains, and ECSZ: eastern California shear zone. The inset marks the study region in a larger map

of the western U.S.

2. Method and Data

Our automatic workflow is largely based on the work by Li et al. (2015), which involves several existing tools
(Figure S1 in the supporting information). These include the Seismogram Transfer Program (STP, developed
by Caltech), the Predict, Search, Invert, and Repeat (PSIR) phase picker to pick S arrivals (Li & Peng, 2016), and
the MFAST code to measure SWS parameters (Savage et al., 2010). The waveform data are downloaded via
STP, and the S phases are picked by the PSIR phase picker. The PSIR phase picker uses a “Predict, Search,
Invert, and Repeat” procedure to search for abrupt changes on waveform amplitude around theoretical
arrivals (Li & Peng, 2016). Fast directions and delay times are computed using the automated program
MFAST (Savage et al,, 2010). This code performs grid search over the fast direction-delay time (®-Jt) space
to minimize the energy on the component perpendicular to the initial polarization of shear waves (Silver &
Chan, 1991). This process is applied with various shear wave windows, and cluster analysis is used to select
the best solution from measurements of all windows (Teanby et al., 2004). An example of measurement on
station KNW is shown in Figure S2.

The input data include 330,000 relocated local earthquakes recorded by the SCSN from 1995 to 2014
(Hauksson et al., 2012) (Figure 1). The SCSN consists of more than 400 stations (Figure 1). We choose the start
year as 1995, because before that horizontal components were only available at a handful of stations. The
events within the 45° cone beneath a station are examined (also known as the shear wave window), that
is, the epicentral distance less than the hypocentral depth. This criterion is used to avoid P/S converted
phases contaminating direct S phases (Booth & Crampin, 1985; Peng & Ben-Zion, 2004).

It is important to apply quality control to initial measurements in order to ensure robust subsequent analysis.
We define high-quality measurements as follows: (1) average signal-to-noise ratio (SNR) of the E and N
components >3, where SNR is defined as the ratio of root-mean-square amplitude 3 s after and before the
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picked S arrival; (2) delay time 6t < 0.4 s and ot error < 0.1 s; (3) fast direction @ error < 15°; (4) cluster grade A
and B (referring to Savage et al., 2010, for detailed definition); and (5) 20° < polarization angle of fast wave
against incoming wave <70° (Peng & Ben-Zion, 2004). These quantitative criteria are either empirical or inher-
ited from previous studies (e.g., Peng & Ben-Zion, 2004; Savage et al., 2010). The use of quantitative criteria
avoids subjective assessment and ensures that the obtained results are reproducible.

To obtain a first-order approximation of spatial variations in anisotropy, we apply a two-dimensional spatial
averaging program TESSA to the resulting SWS measurements (Johnson et al, 2011). The program
computes average anisotropy strength (defined as delay time per kilometer) and fast direction in 2-D grids.
Hence, it does not account for depth dependency. We mesh the study area with a 5 x 5 km grid. The grids
with more than 10 rays are considered to have relatively good resolution (Johnson et al., 2011). For each grid
block, the fast directions are averaged in a circular statistical sense, if the standard deviation within that
block is less than 30° and the standard error of the mean is less than 10° (Savage et al,, 2016). The 2-D
anisotropy strength inversion assumes that delay times accumulate along raypaths, which is a simplification
of nonlinear relationship between apparent delay times and heterogeneous anisotropy strength. Therefore,
the resulting map should be treated as first-order estimation of spatial anisotropy strength (Johnson
et al, 2011).

3. Results

We end up with 232,000 SWS measurements (Table S1) with 90,000 high-quality ones (Table S2). We only use
the high-quality measurements for the subsequent analyses. Before presenting the average results for all
stations, we show individual measurements at stations KNW and FRD along the San Jacinto Fault to illustrate
the stability of SWS measurements. For example, the individual measurements at station KNW remain nearly
constant (albeit with some minor fluctuations) over two decades (Figure S3), indicating the stability of SWS
measurement at this station. The average fast directions of 35° west of north (Figure S3) also agree well with
previous studies (Aster et al., 1990; Crampin et al., 1990; Peacock et al.,, 1988; Yang et al., 2011). However,
station FRD only 20 km away from KNW has different patterns when M 5 events occurred nearby (Figure
S4). For example, two M 5 events occurred in 2001 and 2005 and the SWS parameters at station FRD are
different from other time periods. Such temporal changes in SWS parameters could reflect changes in aniso-
tropic parameters in the upper crust induced by these earthquakes (e.g., Liu et al., 2004), or more likely due to
different spatial sampling with different earthquake locations (Peng & Ben-Zion, 2004). However, in this study
we focus on spatial patterns and only examine general results averaged over two decades.

Figure 2a shows the rose diagrams of fast directions on each station. The fast directions on many stations are
quasi-north, consistent with the regional oymax direction (Yang & Hauksson, 2013), while some near-fault
stations display fault-parallel directions. In particular, some stations along the San Andreas Fault and the
Elsinore Fault show clear fault-parallel directions. In the Los Angeles Basin (Figure 2b), the fast directions
are about NNE, with weak rotation of fast directions from west to east. Stations near the Santa Monica
Fault to north also show fault-parallel directions. However, the block in the north bounded by the Santa
Monica Fault and the San Gabriel Fault (i.e., the San Fernando Valley and Simi Valley) shows approximately
NNW direction with a few stations with mixed patterns.

The area near Cajon Pass, where the San Andreas Fault branches into the South San Andreas and the San
Jacinto Faults, shows more complex patterns. Although fast directions can be still grouped spatially, these
groups are not bounded by active faults or topographic features. Adjacent areas could have quite different
fast directions. For example, the fast direction groups around the northern San Jacinto Fault and trifurca-
tion area are perpendicular to the nearby groups, whose fast directions are parallel to the NW fault strike.
These complexities may be associated with heterogeneous structures or complicate fault geometries in
the area.

The average SWS parameters are computed for each station and compiled in Table S3. To better understand
the SWS mechanisms in Southern California, we compare average fast directions with oymax derived from
earthquake focal mechanisms (Yang & Hauksson, 2013) (Figure 3). As mentioned before, the preferential fast
directions on most stations are consistent with the quasi-north oymax direction. Notable areas are the Los
Angeles Basin, the vicinity of the Salton Sea, and the broad area NE to the Southern San Andreas Fault
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Figure 2. Rose diagrams of fast directions plotted on respective stations in Southern California. (a) Yellow diagrams are for stations with <10 measurements. Cyan
diagrams are for stations with >10 measurements but resultant length < 0.25. The value 0.25 is an empirical threshold (e.g., Peng & Ben-Zion, 2004) below which
the angular distribution is generally scattering or has mixed modes. Red diagrams are for stations with >10 measurements and resultant length > 0.25, suggesting
clear preferential distribution. Dashed boxes mark the areas around the Los Angeles Basin and around the San Jacinto Fault, which are zoomed in further in
Figures 2b and 2c. (b) Rose diagrams around the Los Angeles Basin. Similar and spatially close fast directions are grouped in shaded areas. The arrows represent the
general directions in the groups. SV: Simi Valley and SFV: San Fernando Valley. (c) Rose diagrams around the San Jacinto Fault. The symbols are the same to those in
Figure 2b. SBM: San Bernardino Mountains.

(Figure 3). However, several local areas have inconsistent directions between fast direction and 6ymax. From
NW to SE, these areas include the Coso volcanic area, the San Andreas Fault, the Santa Ynez Fault, the block
NW to the Los Angeles Basin, both sides of the San Jacinto Fault, and the southern end of Peninsular Ranges
near San Diego.

Figure 4 shows the maps of spatial averaging fast directions and anisotropy strength. Similar to the observa-
tions above, the fast directions near major faults are parallel or subparallel to the fault strike (e.g., the San
Andreas Fault, the San Jacinto Fault, the Elsinore Fault, the Santa Monica Fault, and the San Gabriel Fault).
The areas with NNE fast directions include the Los Angeles Basin, the blocks along the San Jacinto Fault,
and the NE side of the Southern San Andreas Fault (Figure 4a). We note a clear contrast of fast directions
across the Southern San Andreas Fault. The NE side of the Southern San Andreas Fault shows NE
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Figure 3. Comparison of average fast directions (red bars) and maximal horizontal compression stresses (cymax. blue bars) at all stations, which are extracted from
focal mechanism analysis by Yang and Hauksson (2013). The angle difference between them is filled with black. Gray shaded areas mark major areas where fast
directions are significantly different from omax-

directions, while the SW side has NW directions (Figure 4a). In comparison with heterogeneous fast directions
in this region, the anisotropy strength is relatively homogenous (Figure 4b). Within the areas with good data
coverage, highly anisotropic bodies are observed around the Coso volcanic area and the southern
Peninsular Ranges.

A\
\ -\
\ \ Y
- . RN
East of north (degree) Anisotropy strength (s\&m) \ \
|+ A W O
90 60 -30 0 30 60 90 0.00 0.01 0.02 0.03 0.04 0.05
8 20 L) 118 7

Figure 4. Spatial averaging of (a) fast directions and (b) anisotropy strength. The dashed contour surrounds the region with more than 10 measurements in each
5 x 5 km grid, which has relatively good resolution.
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4. Discussions

Our SWS measurements from two decades of local earthquake data provide (as far as we know) the most
complete SWS database in Southern California and are reproducible due to the automatic procedures and
objective selection criteria. This SWS database could be a valuable resource for understanding physical
mechanisms of crustal anisotropy and its relationship with regional oymax directions in Southern California
(Figure 1). The general spatial patterns, as shown in Figure 2a, are highly heterogeneous, in stark contrast with
the regional mantle anisotropy where SKS fast directions are consistently E-W region wide (e.g., Liu et al,,
1995; Ozalaybey & Savage, 1995; Polet & Kanamori, 2002). This indicates that the underlying mechanisms
for crustal and mantle anisotropy are different. The local SWS observations show pervasive oymax- and
fault-parallel fast directions (Figure 2a), which are consistent with previous studies (Boness & Zoback, 2006;
Yang et al., 2011). However, close examination of the local-scale variations shows more complex patterns.

The Los Angeles Basin, for example, has NNE fast directions, which is consistent with omay (Figures 2b and 3).
In contrast, the northern block around the San Fernando Valley and Simi Valley shows NW directions, which
are different from opmayx. This suggests that fast directions can be controlled by local-scale geological blocks.
A similar observation was reported by Okaya et al. (2016) showing that patterns of fast directions correlate
with tectonic terranes across the Southern Central Range in Taiwan. They inferred that minerals in meta-
morphic rocks might form preferred alignment due to crustal deformation. Although the Los Angeles
Basin and the northern block consist of similar sedimentary blocks, their internal deformation may differ as
they belong to different geological regimes. The Los Angeles Basin is part of the Peninsular Ranges, while
the northern block belongs to the Transverse Ranges.

As mentioned before, the area to the south of Cajon Pass shows the most complex patterns in the study
region. Most of the fast directions are not opmax parallel (Figure 3) nor are fast direction groups bounded
by active faults (Figure 2c). These observations indicate highly heterogeneous stress field and/or structures
in the upper crust, coincident with the complicated fault geometry and mixture of sedimentary and grani-
tic rocks observed at the surface (Figure S5). Similarly, Yang and Hauksson (2013) identified heterogeneous
stress and a mixture of normal and strike-slip faulting styles in this area. Hence, we suggest that the fast
direction distribution in this region partly reflects the combining complexity in structure, stress,
and geology.

In Figure 3 we observed several areas with significant inconsistencies between fast directions and opmax
where localized structures are likely primary causes of shear wave anisotropy. However, the structures in
effect may vary from place to place. Fault structures are one of the most dominant mechanisms. For example,
the San Andreas Fault likely controls the crustal anisotropy in its vicinity. However, it is interesting that the
fault-parallel directions terminate near the San Bernardino Mountains and the fast directions turn to become
ohmax Parallel when approaching the Salton Sea. Such a change of patterns can be also observed in the stress
field (Yang & Hauksson, 2013). This could be associated with the fault damage by the 1857 M,, 7.9 Fort Tejon
earthquake, which stopped at the Cajon Pass and did not rupture the southernmost section of the San
Andreas Fault. This inference is also consistent with previous observations of fault zone anisotropy induced
by rock damage from large earthquake rupture (Li et al., 2014; Peng & Ben-Zion, 2004) but is inconsistent with
a rapid healing in SWS parameters following the Kobe earthquake (Tadokoro et al., 1999).

Besides fault-related anisotropy, other structural mechanisms are likely prominent in Southern California,
particularly in the block-shape areas where omax and fast directions do not match. Around the Coso volcanic
area, for example, local stress field may be perturbed by magma intrusion and migration within the litho-
sphere (Johnson et al,, 2011; Shelley et al., 2014). In comparison, there are mixed granitic and sedimentary
rocks near the San Jacinto Fault and the southern Peninsular Ranges (Figure S5). It is possible that the hetero-
geneities in lithological properties cause variations in fracture orientation under regional stress. Besides,
minerals in granitic rocks might be aligned preferentially under crustal deformation (e.g., Okaya et al.,
2016). However, definitive evidence from rock physics measurement on the outcrop samples in the region
has not been available yet. These complex patterns revealed from our comprehensive data set demonstrate
that regional stress and fault structures cannot adequately explain the upper crustal anisotropy in Southern
California. Other mechanisms for crustal anisotropy (e.g., rock types, layering, etc.) could be more pervasive
than was shown in previous studies (e.g., Boness & Zoback, 2006; Yang et al., 2011).
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