1,072 research outputs found

    Performance analysis and comparison of PoW, PoS and DAG based blockchains

    Get PDF
    In the blockchain, the consensus mechanism plays a key role in maintaining the security and legitimation of contents recorded in the blocks. Various blockchain consensus mechanisms have been proposed. However, there is no technical analysis and comparison as a guideline to determine which type of consensus mechanism should be adopted in a specific scenario/application. To this end, this work investigates three mainstream consensus mechanisms in the blockchain, namely, Proof of Work (PoW), Proof of Stake (PoS), and Direct Acyclic Graph (DAG), and derives their performances in terms of the average time to generate a new block, the confirmation delay, the Transaction Per Second (TPS) and the confirmation failure probability. The results show that the consensus process is affected by both network resource (computation power/coin age, buffer size) and network load conditions. In addition, it shows that PoW and PoS are more sensitive to the change of network resource while DAG is more sensitive to network load conditions

    Enhanced inhibitory synaptic transmission in the spinal dorsal horn mediates antinociceptive effects of TC-2559

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TC-2559 is a selective α4β2 subtype of nicotinic acetylcholine receptor (nAChR) partial agonist and α4β2 nAChR activation has been related to antinociception. The aim of this study is to investigate the analgesic effect of TC-2559 and its underlying spinal mechanisms.</p> <p>Results</p> <p>1) <it>In vivo </it>bioavailability study: TC-2559 (3 mg/kg) had high absorption rate in rats with maximal total brain concentration reached over 4.6 μM within first 15 min after administration and eliminated rapidly with brain half life of about 20 min after injection. 2) <it>In vivo </it>behavioral experiments: TC-2559 exerts dose dependent antinociceptive effects in both formalin test in mice and chronic constriction injury (CCI) model in rats by activation of α4β2 nAChRs; 3) Whole-cell patch-clamp studies in the superficial dorsal horn neurons of the spinal cord slices: perfusion of TC-2559 (2 μM) significantly increased the frequency, but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The enhancement of sIPSCs was blocked by pre-application of DHβE (2 μM), a selective α4β2 nicotinic receptor antagonist. Neither the frequency nor the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) of spinal dorsal horn neurons were affected by TC-2559.</p> <p>Conclusions</p> <p>Enhancement of inhibitory synaptic transmission in the spinal dorsal horn via activation of α4β2 nAChRs may be one of the mechanisms of the antinociceptive effects of TC-2559 on pathological pain models. It provides further evidence to support the notion that selective α4β2 subtype nAChR agonist may be developed as new analgesic drug for the treatment of neuropathic pain.</p

    Synthesis and fungicidal activity of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline

    Get PDF
    Additional file 3. Structural information (CIF) for Compound 10g
    • …
    corecore