124 research outputs found

    Temporomandibular Joint Disorders as a Cause of Aural Fullness

    Get PDF
    Objectives Temporomandibular joint disorders (TMD) are often associated with aural manifestations. However, it is not clear whether aural fullness could be induced by TMD. The purpose was to investigate the TMD and effectiveness of TMD treatments in patients with mainly or exclusively aural fullness complaint. Methods One hundred and twelve patients, who had aural fullness as the main or sole complaint, presented to the Otolaryngology Department, PLA Army General Hospital, Beijing, China, between January 2010 and January 2015. Patients’ medical history indicated that they had previously been diagnosed and treated for otitis media or sensorineural hearing loss but without positive results. Patients were subjected to pure tone audiometry and acoustic immittance screening using GSI-61 clinical audiometer and GSI TympStar middle ear analyzer respectively. Patients were examined by questionnaire, X-ray and/or computed tomography scan of temporomandibular joint. TMD was categorized according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD). Patients were then treated for TMD. Results All the patients showed normal eardrum and type A tympanogram. The patients of 60.7% (68/112) were classified as group I TMD disorders (muscle disorders), 34.8% (39/112) were group II (disc displacements), and 4.5% (5/112) were group III (arthralgia, osteoarthritis, and osteoarthrosis). Aural fullness was completely resolved or significantly improved in 67 and 34 patients respectively following treatments aimed at improving TMD, with a combined effectiveness of 90.2% (101/112). TMD treatments are especially effective (94.1%) in group I TMD. Conclusion TMD as a potential cause of aural fullness should be considered in otolaryngology practice

    Inhibition of EZH2 Promotes Human Embryonic Stem Cell Differentiation into Mesoderm by Reducing H3K27me3.

    Get PDF
    Mesoderm derived from human embryonic stem cells (hESCs) is a major source of the mesenchymal stem/stromal cells (MSCs) that can differentiate into osteoblasts and chondrocytes for tissue regeneration. While significant progress has been made in understanding of molecular mechanisms of hESC differentiation into mesodermal cells, little is known about epigenetic factors controlling hESC fate toward mesoderm and MSCs. Identifying potential epigenetic factors that control hESC differentiation will undoubtedly lead to advancements in regenerative medicine. Here, we conducted an epigenome-wide analysis of hESCs and MSCs and uncovered that EZH2 was enriched in hESCs and was downregulated significantly in MSCs. The specific EZH2 inhibitor GSK126 directed hESC differentiation toward mesoderm and generated more MSCs by reducing H3K27me3. Our results provide insights into epigenetic landscapes of hESCs and MSCs and suggest that inhibiting EZH2 promotes mesodermal differentiation of hESCs

    Frankenstein: Learning Deep Face Representations using Small Data

    Get PDF
    Deep convolutional neural networks have recently proven extremely effective for difficult face recognition problems in uncontrolled settings. To train such networks, very large training sets are needed with millions of labeled images. For some applications, such as near-infrared (NIR) face recognition, such large training datasets are not publicly available and difficult to collect. In this work, we propose a method to generate very large training datasets of synthetic images by compositing real face images in a given dataset. We show that this method enables to learn models from as few as 10,000 training images, which perform on par with models trained from 500,000 images. Using our approach we also obtain state-of-the-art results on the CASIA NIR-VIS2.0 heterogeneous face recognition dataset.Comment: IEEE TI

    Mastering Strategy Card Game (Hearthstone) with Improved Techniques

    Full text link
    Strategy card game is a well-known genre that is demanding on the intelligent game-play and can be an ideal test-bench for AI. Previous work combines an end-to-end policy function and an optimistic smooth fictitious play, which shows promising performances on the strategy card game Legend of Code and Magic. In this work, we apply such algorithms to Hearthstone, a famous commercial game that is more complicated in game rules and mechanisms. We further propose several improved techniques and consequently achieve significant progress. For a machine-vs-human test we invite a Hearthstone streamer whose best rank was top 10 of the official league in China region that is estimated to be of millions of players. Our models defeat the human player in all Best-of-5 tournaments of full games (including both deck building and battle), showing a strong capability of decision making.Comment: cog2023 ful

    Influence of Oil on Heat Transfer Characteristics of R410A Flow Boiling in Conventional and Small Size Microfin Tubes

    Get PDF
    Compact heat exchangers for refrigeration and air-conditioning systems are beneficial to reduce cost, charge inventory and leakage of refrigerant, and to improve energy efficiency and safety. Using small diameter microfin tubes is one way to decrease the size of heat exchangers. Currently, small diameter micofin tubes with outside diameter (O.D.) of 5.0 mm and 4.0 mm O.D. begin to be applied in newly developed R410A air conditioners instead of conventional size tubes (e.g. 7.0 mm O.D. microfin tubes). With the decrease of the tube diameter, the pressure drop becomes much larger, resulting in the decrease of the heat exchanger performance. In order to avoid such performance decrease, the heat exchanger should be redesign based on clearly understanding the difference of the heat transfer characteristics between conventional size microfin tubes and small diameter micofin tubes. Therefore, the heat transfer characteristics of R410A flow boiling inside both conventional size microfin tubes and small diameter microfin tubes should be known. Under real working conditions of R410A air conditioner, some amount of oil inevitably circulates with the refrigerant and has a significant impact on refrigerant evaporation heat transfer characteristics (Shen and Groll, 2005; Thome, 1996). Therefore, the influence of oil on heat transfer characteristics of R410A flow boiling inside microfin tubes with different diameters covering from conventional size to small size should be investigated. Experiments of R410A-oil mixture flow boiling inside microfin tubes with different outside diameters of 4.0~7.0 mm were performed. The experimental results show that, for 7.0 mm microfin tube, the influence factor of oil on the heat transfer characteristics are larger than 1.0 under the conditions of low vapor qualities (xr,o \u3c 0.4), presenting the enhancement effect of oil on heat transfer characteristics; with the increase of vapor quality, the enhancement becomes smaller, and is smaller than 1.0 under the conditions of low vapor qualities (xr,o \u3e 0.65), showing the deterioration effect of oil on heat transfer characteristics. As the tube diameter decreases from 7.0 mm to 4.0~5.0 mm, the deterioration effect of oil is weakened, especially at intermediate and high vapor qualities; for 4.0-5.0 mm tubes, the presence of oil shows the enhancement effect on heat transfer characteristics under the conditions of intermittent vapor quality (0.4 \u3c xr,o \u3c 0.8), which is not the same as the deterioration effect for 7.0 mm tubes. The comparison of heat transfer coefficient for two 5.0 mm microfin tubes with different fin structures shows that, larger fin height and contact area of liquid with tube wall may enhance the heat transfer for oil-free R410A, but result in smaller enhancement effect of oil at low vapor qualities and smaller deterioration effect of oil at intermediate and high vapor qualities. Based on the experimental data for conventional and small size microfin tubes, a general heat transfer correlation for R410A-oil mixture flow boiling inside microfin tubes was developed, and it agrees with 94% of the experimental data of R410A-oil mixture in 4.0 mm ~ 7.0 mm microfin tubes within a deviation of ±30%

    Exploring OCR Capabilities of GPT-4V(ision) : A Quantitative and In-depth Evaluation

    Full text link
    This paper presents a comprehensive evaluation of the Optical Character Recognition (OCR) capabilities of the recently released GPT-4V(ision), a Large Multimodal Model (LMM). We assess the model's performance across a range of OCR tasks, including scene text recognition, handwritten text recognition, handwritten mathematical expression recognition, table structure recognition, and information extraction from visually-rich document. The evaluation reveals that GPT-4V performs well in recognizing and understanding Latin contents, but struggles with multilingual scenarios and complex tasks. Specifically, it showed limitations when dealing with non-Latin languages and complex tasks such as handwriting mathematical expression recognition, table structure recognition, and end-to-end semantic entity recognition and pair extraction from document image. Based on these observations, we affirm the necessity and continued research value of specialized OCR models. In general, despite its versatility in handling diverse OCR tasks, GPT-4V does not outperform existing state-of-the-art OCR models. How to fully utilize pre-trained general-purpose LMMs such as GPT-4V for OCR downstream tasks remains an open problem. The study offers a critical reference for future research in OCR with LMMs. Evaluation pipeline and results are available at https://github.com/SCUT-DLVCLab/GPT-4V_OCR

    Effect of Mild Heating Assisted Alkaline pH Shift Treatment on the Structural and Functional Properties of Porcine Liver Protein

    Get PDF
    In this study, a combined method of physical and chemical modification was used to improve the functional characteristics of porcine liver protein (PLP). PLP was modified by mild heating assisted alkaline pH shift treatment. The hydration properties, surface properties, particle size distribution, denaturation degree and molecular structure of modified PLP were measured. The results showed that heat treatment combined with a large shift in pH toward the alkaline side significantly increased the solubility and emulsifying activity of PLP, reduced the particle size while resulting in uniform size distribution, increased the absolute value of zeta potential, and decreased the free sulfhydryl content, changed the primary, secondary and tertiary structures, and increased the surface hydrophobicity. The combined treatment was superior to either treatment alone. In terms of improvements in the hydration and surface properties of PLP, heating at 50 ℃ combined with pH shift toward pH 11 was the best modification condition for PLP
    • …
    corecore