72 research outputs found

    Development of a medical academic degree system in China

    Get PDF
    Context: The Chinese government launched a comprehensive healthcare reform to tackle challenges to health equities. Medical education will become the key for successful healthcare reform. Purpose:We describe the current status of the Chinese medical degree system and its evolution over the last 80 years. Content: Progress has been uneven, historically punctuated most dramatically by the Cultural Revolution. There is a great regional disparity. Doctors with limited tertiary education may be licensed to practice, whereas medical graduates with advanced doctorates may have limited clinical skills. There are undefined relationships between competing tertiary training streams, the academic professional degree, and the clinical residency training programme (RTP). The perceived quality of training in both streams varies widely across China. As the degrees of master or doctor of academic medicine is seen as instrumental in career advancement, including employability in urban hospitals, attainment of this degree is sought after, yet is often unrelated to a role in health care, or is seen as superior to clinical experience. Meanwhile, the practical experience gained in some prestigious academic institutions is deprecated by the RTP and must be repeated before accreditation for clinical practice. This complexity is confusing both for students seeking the most appropriate training, and also for clinics, hospitals and universities seeking to recruit the most appropriate applicants. Conclusion: The future education reforms might include: 1) a domestic system of \u27credits\u27 that gives weight to quality clinical experience vs. academic publications in career advancement, enhanced harmonisation between the competing streams of the professional degree and the RTP, and promotion of mobility of staff between areas of excellence and areas of need; 2) International - a mutual professional and academic recognition between China and other countries by reference to the Bologna Accord, setting up a system of easily comparable and well-understood medical degrees

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A century of trends in adult human height

    Get PDF

    Overexpression of <i>PvFAD3</i> Gene from <i>Plukenetia volubilis</i> Promotes the Biosynthesis of α-Linolenic Acid in Transgenic Tobacco Seeds

    No full text
    The ω-3 fatty acid desaturase (FAD3) gene encodes a rate-limiting enzyme in the synthesis of α-linolenic acid. In this study, homologous cloning was used to obtain the full-length sequence of the PvFAD3 gene of Plukenetia volubilis. The full-length DNA sequence was 1871 bp long, with 8 exons and 7 introns. The structural analysis of the amino acid sequence revealed that the PvFAD3 protein contained three histidine-conserved regions and an endoplasmic reticulum retention signal. The real-time reverse transcription-polymerase chain reaction performed for determining the expression patterns of the PvFAD3 gene in different tissues of P. volubilis showed that PvFAD3 expression was highly expressed in the fast oil accumulation stage of seed. The analysis of subcellular localization assay in epidermal cells of tobacco (Nicotiana benthamiana) leaves showed that the PvFAD3 protein was mainly localized in the endoplasmic reticulum. Seed-specific overexpression vectors were constructed, and Agrobacterium-mediated genetic transformation was performed to obtain transgenic tobacco plants overexpressing PvFAD3. The results of fatty acid assays performed using harvested seeds showed a significant increase in α-linolenic acid content, a dramatic decrease in linoleic acid content, and an obvious increase in oil content in transgenic tobacco seeds. Collectively, the PvFAD3 gene of P. volubilis was confirmed as a key enzyme gene for α-linolenic acid synthesis; thus, indicating that the PvFAD3 gene can be used for fatty acid fraction improvement in oilseed plants

    Federated Learning-Based Resource Management with Blockchain Trust Assurance in Smart IoT

    No full text
    Resource management is a key issue that needs to be addressed in the future smart Internet of Things (IoT). This paper focuses on a Federated Learning (FL)-based resource management mechanism in IoT. It incorporates blockchain technology to guarantee the security of the FL model parameters exchange. We propose an IoT resource management framework incorporating blockchain and federated learning technologies; then, a specific FL-based resource management with a blockchain trust assurance algorithm is given. We use a Support Vector Machine (SVM) classifier to detect malicious nodes in order to avoid the impact on the performance of the FL-based algorithm. Finally, we perform simulation to verify the SVM classification effect and the proposed algorithm performance. The results show that the SVM-based malicious node identification accuracy can be acceptable. Moreover, the proposed algorithm obtains better performance when malicious nodes are excluded from the FL selected participant

    Systolic blood pressure trajectories after acute ischemic strokes and clinical outcomes: A systematic review

    No full text
    Abstract Blood pressure(BP) varies drastically during the acute phase after stroke onset. BP level and BP variability may have a major impact on acute ischemic stroke (AIS) prognosis. However, the association between trajectories of blood pressure over time and clinical outcomes have not been established. This review sought out existing evidences for associations of systolic blood pressure (SBP) trajectories on outcomes after stroke to determine the connection between SBP trajectories and stroke prognosis. According to a pre‐designed search strategy, literature search was carried out in Embase, Pubmed and Web of Science. Two authors independently evaluated study eligibility and quality, and literature data were extracted. When the literature was eligible, we perform meta‐analysis to determine associations of SBP trajectories with clinical outcomes. Seven studies were finally screened out of 52 studies retrieved. Seven studies received a good risk of bias rating and reported BP measurement methods and intervals, BP trajectories modeling methods, outcome measures, but it was found that final systolic BP trajectories in various papers were significantly different. All studies reported statistically significant associations between systolic blood pressure trajectories and prognosis. Methodological heterogeneity is observed in studies. However, this systematic review suggests that the high SBP group after AIS is related to poor clinical outcomes, while the rapid decline or medium‐to‐low or low SBP group is associated with relatively better clinical outcomes at different period after stroke. More prospective studies are needed to report the full methodology according to standardized criteria and explore relationships between SBP trajectories and prognosis of stroke

    Integrated Transcriptome and Proteome Analysis Provides Insight into the Ribosome Inactivating Proteins in Plukenetia volubilis Seeds

    No full text
    Plukenetia volubilis is a highly promising plant with high nutritional and economic values. In our previous studies, the expression levels of ricin encoded transcripts were the highest in the maturation stage of P. volubilis seeds. The present study investigated the transcriptome and proteome profiles of seeds at two developmental stages (Pv-1 and Pv-2) using RNA-Seq and iTRAQ technologies. A total of 53,224 unigenes and 6026 proteins were identified, with functional enrichment analyses, including GO, KEGG, and KOG annotations. At two development stages of P. volubilis seeds, 8815 unique differentially expressed genes (DEGs) and 4983 unique differentially abundant proteins (DAPs) were identified. Omics-based association analysis showed that ribosome-inactivating protein (RIP) transcripts had the highest expression and abundance levels in Pv-2, and those DEGs/DAPs of RIPs in the GO category were involved in hydrolase activity. Furthermore, 21 RIP genes and their corresponding amino acid sequences were obtained from libraries produced with transcriptome analysis. The analysis of physicochemical properties showed that 21 RIPs of P. volubilis contained ricin, the ricin_B_lectin domain, or RIP domains and could be divided into three subfamilies, with the largest number for type II RIPs. The expression patterns of 10 RIP genes indicated that they were mostly highly expressed in Pv-2 and 4 transcripts encoding ricin_B_like lectins had very low expression levels during the seed development of P. volubilis. This finding would represent valuable evidence for the safety of oil production from P. volubilis for human consumption. It is also notable that the expression level of the Unigene0030485 encoding type I RIP was the highest in roots, which would be related to the antiviral activity of RIPs. This study provides a comprehensive analysis of the physicochemical properties and expression patterns of RIPs in different organs of P. volubilis and lays a theoretical foundation for further research and utilization of RIPs in P. volubilis

    Channel Modeling for RIS-Assisted 6G Communications

    No full text
    Terahertz communication has been proposed as one of the basic key technologies of the sixth-generation wireless network (6G) due to its significant advantages, such as ultra-large bandwidth, ultra-high transmission rates, high-precision positioning, and high-resolution perception. In terahertz-enabled 6G communication systems, the intelligent reconfiguration of wireless propagation environments by deploying reconfigurable intelligent surfaces (RIS) will be an important research direction. This paper analyzes the far field and near field of RIS-assisted wireless communication and a detailed system description is presented. Subsequently, this paper presents a specific study of the channel model for an RIS-assisted 6G communication system in the far-field and near-field cases, respectively. Finally, an integrated simulation of the channel models for the far-field and near-field cases is carried out, and the performance of the RIS auxiliary link measured in terms of signal-to-noise ratio (SNR) is compared and analyzed. The results show that increasing the size of the RIS surface to improve the SNR is an effective method to enhance the coverage performance of the 6G THz communication system under the strong guarantee of the ultra-large bandwidth of THz

    Channel Modeling for RIS-Assisted 6G Communications

    No full text
    Terahertz communication has been proposed as one of the basic key technologies of the sixth-generation wireless network (6G) due to its significant advantages, such as ultra-large bandwidth, ultra-high transmission rates, high-precision positioning, and high-resolution perception. In terahertz-enabled 6G communication systems, the intelligent reconfiguration of wireless propagation environments by deploying reconfigurable intelligent surfaces (RIS) will be an important research direction. This paper analyzes the far field and near field of RIS-assisted wireless communication and a detailed system description is presented. Subsequently, this paper presents a specific study of the channel model for an RIS-assisted 6G communication system in the far-field and near-field cases, respectively. Finally, an integrated simulation of the channel models for the far-field and near-field cases is carried out, and the performance of the RIS auxiliary link measured in terms of signal-to-noise ratio (SNR) is compared and analyzed. The results show that increasing the size of the RIS surface to improve the SNR is an effective method to enhance the coverage performance of the 6G THz communication system under the strong guarantee of the ultra-large bandwidth of THz

    Optimal Design and Analysis of 4.7 &mu;m Hybrid Deep Dielectric High Efficiency Transmission Gratings

    No full text
    There is currently no transmission grating with good diffraction efficiency in the 4.7 &mu;m band. Metal gratings at this wavelength are all reflective gratings which has a diffraction efficiency of lower than 90% and lower laser damage threshold. In this paper, we bring up a design of a multi-layer transmission grating with both high diffraction efficiency and wide working wavelength band. We have proved that the transmission grating made of composite materials has an average diffraction effectiveness of more than 96% throughout the whole spectral range of 200 nm. Meanwhile, the theoretically computed transmission grating has a highest first-order diffraction efficiency of more than 99.77% at 4746 nm. This multilayer dielectric film transmission grating&rsquo;s optimized design may further boost spectral beam combining power, providing a practical technique for increasing SBC power and brightness
    corecore