7,791 research outputs found

    Fast DGT Based Receivers for GFDM in Broadband Channels

    Full text link
    Generalized frequency division multiplexing (GFDM) is a recent multicarrier 5G waveform candidate with flexibility of pulse shaping filters. However, the flexibility of choosing a pulse shaping filter may result in inter carrier interference (ICI) and inter symbol interference (ISI), which becomes more severe in a broadband channel. In order to eliminate the ISI and ICI, based on discrete Gabor transform (DGT), in this paper, a transmit GFDM signal is first treated as an inverse DGT (IDGT), and then a frequency-domain DGT is formulated to recover (as a receiver) the GFDM signal. Furthermore, to reduce the complexity, a suboptimal frequency-domain DGT called local DGT (LDGT) is developed. Some analyses are also given for the proposed DGT based receivers.Comment: 28 pages, 8 figure

    A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications.

    Get PDF
    RNA research and therapy relies primarily on synthetic RNAs. We employed recombinant RNA technology toward large-scale production of pre-miRNA agents in bacteria, but found the majority of target RNAs were not or negligibly expressed. We thus developed a novel strategy to achieve consistent high-yield biosynthesis of chimeric RNAs carrying various small RNAs (e.g. miRNAs, siRNAs and RNA aptamers), which was based upon an optimal noncoding RNA scaffold (OnRS) derived from tRNA fusion pre-miR-34a (tRNA/mir-34a). Multi-milligrams of chimeric RNAs (e.g. OnRS/miR-124, OnRS/GFP-siRNA, OnRS/Neg (scrambled RNA) and OnRS/MGA (malachite green aptamer)) were readily obtained from 1 l bacterial culture. Deep sequencing analyses revealed that mature miR-124 and target GFP-siRNA were selectively released from chimeric RNAs in human cells. Consequently, OnRS/miR-124 was active in suppressing miR-124 target gene expression and controlling cellular processes, and OnRS/GFP-siRNA was effective in knocking down GFP mRNA levels and fluorescent intensity in ES-2/GFP cells and GFP-transgenic mice. Furthermore, the OnRS/MGA sensor offered a specific strong fluorescence upon binding MG, which was utilized as label-free substrate to accurately determine serum RNase activities in pancreatic cancer patients. These results demonstrate that OnRS-based bioengineering is a common, robust and versatile strategy to assemble various types of small RNAs for broad applications

    Microbial community analysis in biocathode microbial fuel cells packed with different materials

    Get PDF
    Biocathode MFCs using microorganisms as catalysts have important advantages in lowering cost and improving sustainability. Electrode materials and microbial synergy determines biocathode MFCs performance. In this study, four materials, granular activated carbon (GAC), granular semicoke (GS), granular graphite (GG) and carbon felt cube (CFC) were used as packed cathodic materials. The microbial composition on each material and its correlation with the electricity generation performance of MFCs were investigated. Results showed that different biocathode materials had an important effect on the type of microbial species in biocathode MFCs. The microbes belonging to Bacteroidetes and Proteobacteria were the dominant phyla in the four materials packed biocathode MFCs. Comamonas of Betaproteobacteria might play significant roles in electron transfer process of GAC, GS and CFC packed biocathode MFCs, while in GG packed MFC Acidovorax may be correlated with power generation. The biocathode materials also had influence on the microbial diversity and evenness, but the differences in them were not positively related to the power production
    • …
    corecore