85 research outputs found

    Excitation and Far field Spectroscopy of surface plasmons in Gold nanostructures

    Get PDF
    The properties of surface plasmons (SPs) and their excitation by a light wave are considered. The interaction of light with a metal nanostructure resulted in transmission, reflection and diffraction of light. The spectra of light obtained from these channels display excitation of SP modes at certain incidence angles and wavelengths. The interaction of SP modes near the normal incidence can result in energy and momentum spectral gaps and variations of the widths of SP resonances. The SP dispersion relations were described with the model of two coupled modes, and the spectral amplitude distribution of the transmitted and reflected light were simulated following Rayleigh approach

    2D and 3D Photonic Crystals: Synthesis, Characterization and Topological Phenomenon

    Get PDF
    Topological photonics has become an increasingly popular research topic in the field of nanophotonics in recent years. Topological phases of light provide opportunities to manipulate light propagation efficiently at the nanoscale volume. Performance of conventional optical elements are limited by back-reflection and bending losses, which hinder their prospect of large scale integration. Topological protection enables unidirectional excitation of edge states or surface states without leaking into the bulk, as well as suppression of scattering when encountering defects and corners. With such advantages, topological photonic elements may surpass conventional photonic design for future generations of ultra-compact efficient computing, imaging, and sensing applications. Due to limitations of fabrication and characterization techniques, previously experimental efforts on topological photonics have been carried out with 2D micron-scale optical design or at the microwave wavelength. This thesis contributes to the experimental development of topological photonics in two aspects: first, how to fabricate and characterize 3D photonic crystals and therefore extend topological protection into the 3D (Chapters 2-3); and second, how to realize nanoscale topological protection in the visible frequencies (chapters 4-6). Specifically, Chapter 2 reports fabrication of 3D single gyroid structures composed of a-Si and FTIR characterization of a photonic bandgap at the mid-infrared wavelength. This is the foundation to investigate more complex morphologies to introduce topologically nontrivial photonic states. Chapter 3 describe properties of double gyroid photonic crystals, followed by angle resolved characterization method in the mid-infrared. Double gyroid photonic crystals can be designed to possess quadratic degeneracy points, Weyl points, and line nodes. Since Weyl points have non-zero Chern numbers, surface states are topologically protected in double gyroid photonic crystals with parity breaking symmetry. The angle resolved characterization method could be utilize to resolve both Weyl points and surface states. Chapter 4 depicts design, fabrication, and characterization of Dirac-like surface plasmon dispersions in metallic nano-pillars. Chapter 5 presents experimental investigation of coupled silicon Mie resonators, which is the first step towards topological design based on inter-lattice sites coupling in the next chapter. Chapter 6 details photonic bandstructure from angle-resolved cathodoluminescence measurements. We analyze bandstructures collected from the bulk of trivially and topologically gapped lattices, as well as zigzag and arm-chaired edges of domain boundaries. Chapter 7 outlines a method to optically enhance dissociation of hydrazine molecules using ultraviolet plasmons, and attempts to use this method for low temperature GaN growth.</p

    Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap

    Get PDF
    A gyroid structure is a distinct morphology that is triply periodic and consists of minimal isosurfaces containing no straight lines. We have designed and synthesized amorphous silicon (a-Si) mid-infrared gyroid photonic crystals that exhibit a complete bandgap in infrared spectroscopy measurements. Photonic crystals were synthesized by deposition of a-Si/Al2O3 coatings onto a sacrificial polymer scaffold defined by two-photon lithography. We observed a 100% reflectance at 7.5 \mum for single gyroids with a unit cell size of 4.5 \mum, in agreement with the photonic bandgap position predicted from full-wave electromagnetic simulations, whereas the observed reflection peak shifted to 8 um for a 5.5 \mum unit cell size. This approach represents a simulation-fabrication-characterization platform to realize three-dimensional gyroid photonic crystals with well-defined dimensions in real space and tailored properties in momentum space

    Stock price reactions to reopening announcements after China abolished its zero-COVID policy

    Get PDF
    As global economies strive for post-COVID recovery, stock market reactions to reopening announcements have become crucial indicators. Though previous research has extensively focused on COVID’s detrimental impact on stock markets, the effects of reopening remain underexplored. This study provides the first causal analysis of the effect of easing restrictions on Chinese firms’ stock prices following the end of China’s three-year Zero-COVID policy. Utilizing regression-discontinuity design, we find that most relaxed measures had minimal or negative impact. However, stock prices jumped 1.4% immediately after the full reopening announcement on December 26, 2022. Using a difference-in-differences approach, we also note a 1.6% increase in the stock prices of Mainland China firms relative to firms in other districts on the Hong Kong stock market two months post-reopening. Our findings offer key insights for policymakers and contribute significantly to academic discourse on the causal relationship between reopening policies and stock market performance

    Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity

    Get PDF
    A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN). The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ)-induced and transgene-mediated murine models of type 1 diabetes (T1D), we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1) expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal pain sensitivity that parallel changes in TRPV1 as determined by paw withdrawal latency (PWL). An early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV1-mediated whole cell currents are larger and smaller in dorsal root ganglion (DRG) neurons collected from hyperalgesic and hypoalgesic mice. Resiniferatoxin (RTX) binding, a measure of TRPV1 expression is increased and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively. Immunohistochemical labeling of spinal cord lamina I and II, dorsal root ganglion (DRG), and paw skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPV1 expression, respectively. A role for TRPV1 in thermal DPN is further suggested by the failure of STZ treatment to influence thermal nociception in TRPV1 deficient mice. These findings demonstrate that altered TRPV1 expression and function contribute to diabetes-induced changes in thermal perception

    Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition

    Get PDF
    Conventional methods require elevated temperatures in order to dissociate high-energy nitrogen bonds in precursor molecules such as ammonia or hydrazine used for nitride film growth. We report enhanced photodissociation of surface-absorbed hydrazine (N_2H_4) molecules at low temperature by using ultraviolet surface plasmons to concentrate the exciting radiation. Plasmonic nanostructured aluminum substrates were designed to provide resonant near field concentration at λ = 248 nm (5 eV), corresponding to the maximum optical cross section for hydrogen abstraction from N_2H_4. We employed nanoimprint lithography to fabricate 1 mm × 1 mm arrays of the resonant plasmonic structures, and ultraviolet reflectance spectroscopy confirmed resonant extinction at 248 nm. Hydrazine was cryogenically adsorbed to the plasmonic substrate in a low-pressure ambient, and 5 eV surface plasmons were resonantly excited using a pulsed KrF laser. Mass spectrometry was used to characterize the photodissociation products and indicated a 6.2× overall enhancement in photodissociation yield for hydrazine adsorbed on plasmonic substrates compared with control substrates. The ultraviolet surface plasmon enhanced photodissociation demonstrated here may provide a valuable method to generate reactive precursors for deposition of nitride thin film materials at low temperatures

    Beta cells deficient for Renalase counteract autoimmunity by shaping natural killer cell activity

    Get PDF
    Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing pancreatic beta cells. Recent advancements in the technology of generating pancreatic beta cells from human pluripotent stem cells (SC-beta cells) have facilitated the exploration of cell replacement therapies for treating T1D. However, the persistent threat of autoimmunity poses a significant challenge to the survival of transplanted SC-beta cells. Genetic engineering is a promising approach to enhance immune resistance of beta cells as we previously showed by inactivating the Renalase (Rnls) gene. Here, we demonstrate that Rnls loss of function in beta cells shapes autoimmunity by mediating a regulatory natural killer (NK) cell phenotype important for the induction of tolerogenic antigen-presenting cells. Rnls-deficient beta cells mediate cell–cell contact-independent induction of hallmark anti-inflammatory cytokine Tgfβ1 in NK cells. In addition, surface expression of regulatory NK immune checkpoints CD47 and Ceacam1 is markedly elevated on beta cells deficient for Rnls. Altered glucose metabolism in Rnls mutant beta cells is involved in the upregulation of CD47 surface expression. These findings are crucial to better understand how genetically engineered beta cells shape autoimmunity, giving valuable insights for future therapeutic advancements to treat and cure T1D

    M2 Polarization of Macrophages Facilitates Arsenic-Induced Cell Transformation of Lung Epithelial Cells

    Get PDF
    The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages

    Integrative transcriptomic profiling of mRNA, miRNA, circRNA, and lncRNA in alveolar macrophages isolated from PRRSV-infected porcine

    Get PDF
    IntroductionThe porcine reproductive and respiratory syndrome virus (PRRSV) continues to pose a significant threat to the global swine industry, attributed largely to its immunosuppressive properties and the chronic nature of its infection. The absence of effective vaccines and therapeutics amplifies the urgency to deepen our comprehension of PRRSV’s intricate pathogenic mechanisms. Previous transcriptomic studies, although informative, are partially constrained by their predominant reliance on in vitro models or lack of long-term infections. Moreover, the role of circular RNAs (circRNAs) during PRRSV invasion is yet to be elucidated.MethodsIn this study, we employed an in vivo approach, exposing piglets to a PRRSV challenge over varied durations of 3, 7, or 21 days. Subsequently, porcine alveolar macrophages were isolated for a comprehensive transcriptomic investigation, examining the expression patterns of mRNAs, miRNAs, circRNAs, and long non-coding RNAs (lncRNAs).ResultsDifferentially expressed RNAs from all four categories were identified, underscoring the dynamic interplay among these RNA species during PRRSV infection. Functional enrichment analyses indicate that these differentially expressed RNAs, as well as their target genes, play a pivotal role in immune related pathways. For the first time, we integrated circRNAs into the lncRNA-miRNA-mRNA relationship, constructing a competitive endogenous RNA (ceRNA) network. Our findings highlight the immune-related genes, CTLA4 and SAMHD1, as well as their associated miRNAs, lncRNAs, and circRNAs, suggesting potential therapeutic targets for PRRS. Importantly, we corroborated the expression patterns of selected RNAs through RT-qPCR, ensuring consistency with our transcriptomic sequencing data.DiscussionThis study sheds lights on the intricate RNA interplay during PRRSV infection and provides a solid foundation for future therapeutic strategizing
    • …
    corecore