267 research outputs found
Analysis on shear lag effect of three-span continuous curve steel box-section girder
Analysis on shear lag effect of curved box-section girder use finite element analysis software, by change three-span continuous curve steel’s space geometry parameter into explore basic model, which study different central angel and different curvature radius influence take part act on three span continuous curve steel box-section girder. By analysis on shear lag effect of different central angel, we can draw a conclusion that the shear lag effect on inner side and outer side can appear a simultaneity. When inner side joint point approach plus max, in the same time the outer side joint point approach minus max. When curve box-section girder in earthquake effect, the inner side is much larger than outer side. When other factors are not change, the change of central angel influence a lot on shear lag effect. The central angel is smaller, the bigger shear lag on midspan’s inner side than outer side. When only change curve radius, the smaller curve radius is, the bigger on midspan’s outer side than inner side
Low-field magnetotransport in graphene cavity devices
Confinement and edge structures are known to play significant roles in
electronic and transport properties of two-dimensional materials. Here, we
report on low-temperature magnetotransport measurements of lithographically
patterned graphene cavity nanodevices. It is found that the evolution of the
low-field magnetoconductance characteristics with varying carrier density
exhibits different behaviors in graphene cavity and bulk graphene devices. In
the graphene cavity devices, we have observed that intravalley scattering
becomes dominant as the Fermi level gets close to the Dirac point. We associate
this enhanced intravalley scattering to the effect of charge inhomogeneities
and edge disorder in the confined graphene nanostructures. We have also
observed that the dephasing rate of carriers in the cavity devices follows a
parabolic temperature dependence, indicating that the direct Coulomb
interaction scattering mechanism governs the dephasing at low temperatures. Our
results demonstrate the importance of confinement in carrier transport in
graphene nanostructure devices.Comment: 13 pages, 5 figure
Weak antilocalization and electron-electron interaction in coupled multiple-channel transport in a BiSe thin film
Electron transport properties of a topological insulator BiSe thin
film are studied in Hall-bar geometry. The film with a thickness of 10 nm is
grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices
are fabricated from the as-grown film directly on the mica substrate. Weak
antilocalization and electron-electron interaction effects are observed and
analyzed at low temperatures. The phase-coherence length extracted from the
measured weak antilocalization characteristics shows a strong power-law
increase with decreasing temperature and the transport in the film is shown to
occur via coupled multiple (topological surface and bulk states) channels. The
conductivity of the film shows a logarithmically decrease with decreasing
temperature and thus the electron-electron interaction plays a dominant role in
quantum corrections to the conductivity of the film at low temperatures.Comment: 12 pages, 5 figure
Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures
Graphene/hexagonal boron nitride (G/-BN) heterostructures offer an
excellent platform for developing nanoelectronic devices and for exploring
correlated states in graphene under modulation by a periodic superlattice
potential. Here, we report on transport measurements of nearly
-twisted G/-BN heterostructures. The heterostructures
investigated are prepared by dry transfer and thermally annealing processes and
are in the low mobility regime (approximately
at 1.9 K). The replica
Dirac spectra and Hofstadter butterfly spectra are observed on the hole
transport side, but not on the electron transport side, of the
heterostructures. We associate the observed electron-hole asymmetry to the
presences of a large difference between the opened gaps in the conduction and
valence bands and a strong enhancement in the interband contribution to the
conductivity on the electron transport side in the low-mobility G/-BN
heterostructures. We also show that the gaps opened at the central Dirac point
and the hole-branch secondary Dirac point are large, suggesting the presence of
strong graphene-substrate interaction and electron-electron interaction in our
G/-BN heterostructures. Our results provide additional helpful insight into
the transport mechanism in G/-BN heterostructures.Comment: 7 pages, 4 figure
Gradient-Guided Attentional Network for Radio Transient Localization With the Cluster-Feed Telescope
Bi2O2Se nanowires presenting high mobility and strong spin-orbit coupling
Systematic electrical transport characterizations were performed on
high-quality Bi2O2Se nanowires to illustrate its great transport properties and
further application potentials in spintronics. Bi2O2Se nanowires synthesized by
chemical vapor deposition method presented a high field-effect mobility up to
1.34*104 cm2V-1s-1, and exhibited ballistic transport in the low back-gate
voltage (Vg) regime where conductance plateaus were observed. When further
increasing the electron density by increasing Vg, we entered the phase coherent
regime and weak antilocalization (WAL) was observed. The spin relaxation length
extracted from the WAL was found to be gate tunable, ranging from ~100 nm to
~250 nm and reaching a stronger spin-obit coupling (SOC) than the
two-dimensional counterpart (flakes). We attribute the strong SOC and the gate
tunability to the presence of a surface accumulation layer which induces a
strong inversion asymmetry on the surface. Such scenario was supported by the
observation of two Shubnikov-de Haas oscillation frequencies that correspond to
two types of carriers, one on the surface, and the other in the bulk. The
high-quality Bi2O2Se nanowires with a high mobility and a strong SOC can act as
a very prospective material in future spintronics.Comment: 22 pages, 7 figure
Strong spin-orbit interaction and magnetotransport in semiconductor BiOSe nanoplates
Semiconductor BiOSe nanolayers of high crystal quality have been
realized via epitaxial growth. These two-dimensional (2D) materials possess
excellent electron transport properties with potential application in
nanoelectronics. It is also strongly expected that the 2D BiOSe
nanolayers could be of an excellent material platform for developing spintronic
and topological quantum devices, if the presence of strong spin-orbit
interaction in the 2D materials can be experimentally demonstrated. Here, we
report on experimental determination of the strength of spin-orbit interaction
in BiOSe nanoplates through magnetotransport measurements. The
nanoplates are epitaxially grown by chemical vapor deposition and the
magnetotransport measurements are performed at low temperatures. The measured
magnetoconductance exhibits a crossover behavior from weak antilocalization to
weak localization at low magnetic fields with increasing temperature or
decreasing back gate voltage. We have analyzed this transition behavior of the
magnetoconductance based on an interference theory which describes the quantum
correction to the magnetoconductance of a 2D system in the presence of
spin-orbit interaction. Dephasing length and spin relaxation length are
extracted from the magnetoconductance measurements. Comparing to other
semiconductor nanostructures, the extracted relatively short spin relaxation
length of ~150 nm indicates the existence of strong spin-orbit interaction in
BiOSe nanolayers.Comment: 14 pages, 4 figures, and 5 pages of Supplementary Material
- …