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Abstract— Large, single-dish radio telescopes with high sen-
sitivities are ideal for detecting faint radio transients (RTs).
However, single-dish radio telescopes possess a limited angular
resolution, which limits their accuracy in localizing objects.
In this article, we propose to improve the localization accuracy
of the RT by exploring the 3-D focal field distributions (3DFFDs)
of the dish reflector with a gradient-guided attentional network
(GGAN). The LSTM-based attention block of the GGAN achieves
the task-oriented adaptive recalibration of 3DFFD features by
exploring the significant properties and spatial dependencies of
3DFFD. In addition, a gradient-guided approach is being devel-
oped to improve the attention block performance under varying
incident angles. The proposed attention mechanism is applied
to the convolutional neural network in order to reconstruct
3DFFDs and perceive RT positions based on the reconstructed
results. Simulation results indicate that the technique can enable
the precise localization of RTs. Moreover, the proposed solution
improves the telescope’s instantaneous field of view (FOV) com-
pared to a sky survey with the traditional cluster feed telescope.

Index Terms— 3-D focal field distribution (3DFFD), attentional
network, localization of radio transients (RTs), single-dish radio
telescope, wide field of view (FoV).

I. INTRODUCTION

RADIO transients (RTs) with high localization accuracy
can be used as the probes in the exploration of the inter-

galactic medium and constrain cosmological parameters [1],
[2]. Currently, two main types of instruments have been used
to detect and locate RTs: interferometers and single-dish radio
telescopes. The localization accuracy of the interferometer is
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directly proportional to the baseline length [3], [4]. As an
interferometer used for astronomical observations, it requires
a group of reflectors and feeds elements, which generates
massive data streams [5]. It poses many challenges in terms
of real-time data processing. Alternatively, a single-dish radio
telescope has a higher brightness sensitivity than an interfer-
ometer with an equal collecting area [6]. The localization pre-
cision of the RTs with a single-dish radio telescope increases
directly proportionally to the aperture size of the dish [7].
Although increasing the aperture size of the radio telescope
dish improves the directivity, resulting in a higher resolution,
it reduces the telescope’s field of view (FoV). This reveals
that the sensing area decreases proportionally as the aperture
size increases, resulting in a decrease in the radio telescope’s
overall survey speed [8]. In addition, expanding the aperture
size of the radio telescope is not always possible, especially
if the telescope is planned for installation within a restricted
space.

A phased array feed (PAF) can be used to improve the
FOV and localization accuracy of radio telescopes to solve
the aforementioned problems in single-dish radio telescopes.
A PAF can generate numerous overlapped beams at the same
time utilizing digital beamforming technology. Numerous
beams allow for an improvement in the FoV. In addition, the
overlapped beams can be used to reduce the uncertainty of
RTs’ positions [9]. However, PAFs are challenging to design
(e.g., impedance matching) and thus costly [10]. Besides that,
the cluster feed that employs a cluster of individually feed
antennas, such as horn antennas, can be used to generate
multiple beams, which also allows for improving the FoV
of the radio telescope. The cluster feed systems have been
commissioned in some large-aperture single-dish radio tele-
scopes. For instance, the Parkes radio telescope located in
Australia and the FAST radio telescope located in China
have deployed the cluster feeds to survey the sky [11],
[12]. However, these cluster feeds are often electrically large,
which results in multibeams in nonoverlapping configurations.
In addition, for the cluster feed regimes, the angular resolution
of radio telescopes is determined by the beam widths of
nonoverlapping beams [7], [8]. Recently, a novel approach
for detecting transient radio targets based on the focal-field
distribution (FFD) feature matching has been proposed [13].
This article proposed searching for astronomical transients
based on variations in the FFDs with different frequencies
and incident angles. The main advantage of this technology is

1558-0644 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 22,2023 at 08:55:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7944-3327
https://orcid.org/0000-0002-2390-725X
https://orcid.org/0000-0002-4482-0196
https://orcid.org/0000-0002-8902-4855
https://orcid.org/0000-0001-7317-1634


4601511 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

the ability for instantaneous localization based on FFD feature
matching without the need for beam scanning. However, the
overall performance of this technique is bounded by the
number of feed elements. To solve the FFD undersampled
problem of the cluster feeds, Wu et al. [14] employed a
generative adversarial network to reconstruct FFDs at different
frequency bands. Then, the deep neural network was utilized
to accomplish multifrequency joint estimation of RT positions.

Attention modules in computer vision are employed to
enhance the powerful representations of images that are
most relevant for a given task. Wang et al. [15] used the
intermediate features of images to generate the same size
attention masks with the residual block as the backbone.
The attention masks achieve selective enhancement of the
intermediate features in the spatial and channel domains.
Based on the intermediate features of images, Woo et al. [16]
utilized multilayer perceptron (MLP) and convolutional layer
to infer the channel and spatial attention masks, respec-
tively, and implemented channel attention and spatial attention
sequentially. For the image segmentation task, Fu et al. [17]
used matrix multiplications to replace the MLP and con-
volutional layer to achieve attention inference, which helps
model the long-range contextual information in segmenta-
tion tasks. Focusing on the relationship between channels,
Hu et al. [18] established the mapping relationships between
the channel descriptors of intermediate features and the atten-
tion masks to achieve feature recalibration in the channel
domain. Recently, it was proposed to use attention blocks
in the neural network for multislice 2-D computer tomog-
raphy (CT) image processing. To differentiate prostate bed
from pelvis CT images, Xu et al. [19] developed a U-shaped
2-D convolutional network to explore the combination of
the center 2-D CT slice and the adjacent slices. Meanwhile,
cascaded attention blocks were employed to enhance repre-
sentative features of the prostate bed. In order to identify the
COVID-19 cases from community-acquired pneumonia infec-
tions, Ouyang et al. [20] applied 3-D convolution operations
on CT slice sequence to extract meaningful features. The atten-
tion mechanism was adopted in feature mining processing,
which compels the model to focus on lesion regions of the
lung. A similar concept can be borrowed from the FFD-based
RT localization problem. In principle, when RTs come into
radio telescopes with various angles, field distributions have
off-focus peaks, and thus, the focal plane is not the optimal
signal-interception position [21]. Apart from the FFDs in the
focal plane, the adjacent slices of FFDs should be taken into
consideration.

The analysis of CT slices prompted us to look at both the
focal plane and the vicinity plane to get a more comprehen-
sive understanding of RT locations. In addition, a specially
designed LSTM-based attention block is utilized to selectively
enhance and depress the 3-D focal field distribution (3DFFD)
features. Distinct from the previously discussed attention
modules, which only consider the intermediate features of
the image, the proposed LSTM-based attention block real-
izes attention not only by utilizing the spatial features but
also by considering the spatial dependencies within 3DFFDs.
Furthermore, we propose a method of guiding attention block

Fig. 1. 3DFFDs on the condition of a 30-m parabolic reflector with a focal
length to diameter ratio of 0.467 and linear polarization incident wave with
frequency 1.25 GHz. (a) and (c) Amplitude distributions normalized by the
intensity peaks. (b) and (d) Phase distributions relative to the phases of the
center pixels. In the case of the azimuth angle of 0◦ , (a)–(d) correspond to
zenith angles of 0◦ and 1◦, respectively.

based on the gradient distributions of 3DFFDs. This method
provides direct reinforcement of salient features based on
prior knowledge without the need for training. The proposed
gradient-guided attentional network (GGAN) aims to obtain
highly accurate localization of RTs by using two steps. First,
the attentional reconstruction network is employed, which
permits the reconstruction of 3DFFDs with high resolution
from received signals, i.e., undersampled 3DFFDs. Next, the
attentional localization network with gradient guidance is uti-
lized to establish mapping relationships between reconstructed
3DFFDs and the RT positions. Our proposed solution allows
RT localization to be performed with greater accuracy than the
telescope’s angular resolution. As well, the proposed solution
improves the telescope’s instantaneous FOV in comparison
with sky survey with cluster feed.

II. 3DFFD ANALYSIS

The xyz coordinate system is established with the focal
point as the origin, the focal plane as the xy plane, and the
symmetry axis of the reflector as the z-axis. The angles of
the incoming wave along the off-z-axis and off-x-axis are
defined as zenith and azimuth angles, respectively. As illus-
trated in Fig. 1, 3DFFDs involve two types of patterns:
field amplitude and phase distributions, which were created
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Fig. 2. Illustration of the pipeline of the proposed GGAN. It consists of an attentional reconstruction network and an attentional localization network.
The ellipses indicate that previous structures are repeated three times. The inner structure of the LSTM-based attention block and the gradient guidance are
illustrated in Figs. 3 and 4, respectively.

using commercial computational electromagnetics software,
FEKO. Fig. 1(a) and (c) illustrates the computed amplitude
distributions of 3DFFDs. Due to the diffraction effect, the
amplitude distribution consists of a bright spot and a series of
concentric rings along with the diminishing intensity. Com-
pared with the focal plane, the defocus effect is observed
on the amplitude distribution slices on the vicinity planes
along the symmetry axis of the reflector, where the intensity
peaks diffuse toward distribution gaps. In addition, as can
be observed in Fig. 1(b) and (d), the phase distributions are
similar to amplitude distributions, and the positions of central
regions are consistent for both distributions. However, the
phase distributions are relatively flat in circular rings. Besides
that, in the λ/2 offset plane, wave path differences cause
variations of phase distribution slices.

By comparing the changes of the 3DFFD caused by the vari-
ation of the incident angle in Fig. 1, we observe that axial inci-
dent wave produces symmetrical distribution, whereas off-axis
incoming wave leads to distortion. Moreover, increasing the
zenith angle of RT results in the corresponding movements of
central regions along the x-axis. The right column of Fig. 1
shows the differences between distributions on neighborhood
slices. As can be seen from the subtraction results, the form
and extent of defocusing vary with the incident angle of
RT. Likewise, the difference between phase distribution slices
varies with the incident angle as well. This suggests that both
the spatial features and spatial dependencies of 3DFFDs are
linked to RT positions. As a result, when building an attention
mask, our attention block takes into account both of the
aforementioned parameters, resulting in minimal information
loss.

Among these changes of the 3DFFD produced by the
variation of RT position, we find that the intensity peaks of
amplitude distributions and the central regions of phase distrib-
utions have strong connections with RT positions. Meanwhile,
the boundaries of circular rings include structure information
of the 3DFFDs. Hence, in the 3DFFD-based position inferring
procedure, the suggested model should pay more attention to
the aforestated parts. To this end, the gradient distributions of
3DFFDs are used to find these important regions and guide

TABLE I

CONFIGURATION OF THE PROPOSED GGAN

attention blocks to focus more on the features of intensity
peaks, phase central regions, and boundaries, allowing for a
more efficient and robust establishment of mapping relation-
ships between the 3DFFDs and the incident angles.

III. PROPOSED MODEL

The schematic of the proposed model is illustrated in Fig. 2.
It consists of two subnetworks: 1) an attentional reconstruction
network that consists of an encoder and a decoder that aim
for reconstructing 3DFFDs from received signals and 2) an
attentional localization network that is comprised of two
encoders with the same structure and an MLP that are utilized
to estimate the RT positions according to reconstructed results.
The detailed configuration of GGAN is tabulated in Table I.
As the structures of two encoders in the attentional localization
network are consistent, the configuration of only one encoder
is listed in Table I. K , L, and W refer to the slice number,
length, and width of the reconstructed 3DFFD, respectively.
n and ks denote the kernel number and kernel size of the
convolutional layers, and n� represents the number of densely
connected neurons. All convolution strides in the proposed
model are set to 1. The 3-D amplitude and phase distributions
sparsely sampled by the cluster feed are considered the input
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Fig. 3. Graphical illustration of the proposed LSTM-based attention block, which realizes spatial attention and channel attention simultaneously according
to spatial features and dependencies of the 3DFFD.

of the attentional reconstruction network. In order to meet
the requirement of the input dimension, the undersampled
amplitude and phase distributions were padded with zeros and
concatenated to create a two-channel input. The attentional
reconstruction network simultaneously recovers features for
both distributions, resulting in a two-channel output. Due
to the high correlations between amplitude and phase dis-
tributions of the 3DFFDs, this proposed technique allows
them to contribute supplemental information to each other
in the distribution reconstruction stage. To explore a larger
hypothetical space, we adopt two encoders in the localiza-
tion network, which takes reconstructed amplitude and phase
distribution as input, respectively. The 2-D convolutional and
transposed convolutional layers are used to extract and recover
features of 3DFFDs, respectively. Note that K convolutional
or transposed convolutional layers are applied to K slices
separately, which helps reserve the latent intraslices’ rela-
tionships within 3DFFD. Each set of convolutional layers
is followed by an LSTM-based attention block to establish
the intraslices’ dependences within 3DFFD and accomplish
feature improvements. Gradient guidances are applied in the
localization stage.

A. Attention Mechanism for 3DFFD Features
As analyzed in Section II, 3DFFDs under various RT

position conditions are made up of salient regions and trivial
parts. Furthermore, the thermal sky noise background, ground
spillover noise, and receiver electronics noise all degrade
3DFFDs, potentially lowering the efficiency and performance
of the localization model. Hence, the attention mechanism
is employed in the proposed model to automatically multi-
ply each 3DFFD feature in the hidden layers by a weight.
Specifically, LSTM-based attention blocks and gradient guid-
ances enable encoders to selectively emphasize representative
features while weakening trivial ones. Apart from that, the
attention blocks with feature recalibration capability achieve
denoising and assist the decoder in synthesizing features.

1) LSTM-Based Attention Block: The LSTM module with
gate layers is capable of selectively integrating features of
FFD slices (the two-channel combination of amplitude and
phase slices or either of them) depending on the importance
of each slice’s features [22], resulting in meaningful features
and spatial relationships of FFD slices for each incident
angle. Given the intermediate features of FFD slices, a =
[a1, . . . , aK ] ∈ R

K×l×w×n, where K is the length of slice

sequence. K , l, and w bound the spatial size. n represents
the channel dimension. The spatial features on each channel
are one type of representation of FFD slices. The LSTM
module accepts a as an input and generates the hidden states
h = [h1, . . . , hK ], where h ∈ R

K×l×w×n′
and n′ represents the

channel dimension of the output after the LSTM module. The
hidden state hk refers to the representations and dependencies
of the first k FFD slices. Instead of conventionally exploring
the last hidden state hK , we introduced the voting strategy
to incorporate all hidden states, giving our model richer
dynamics. The voting strategy is given as follows:

v = softmax(W v (E(h)) + bv). (1)

E denotes the expectation for h across the last three axes,
which results in a K dimensional vector. W v ∈ R

K×K is
the expectation-votes’ parameter matrix, and bv is the bias
vector. The softmax function was utilized to normalize these
votes to the (0, 1) range. The integrated hidden state hv is
the weighted sum of h according to votes v. By exploring
hv , the channel attention and spatial attention were applied
to adaptively search for the important channels in the last
dimensionality and adaptively enhance spatial features in the
remaining dimensionality.

Fig. 3 depicts the overview of our proposed LSTM-based
attention block, which is comprised of three subbranches.
In the top branch, the global average pooling was applied
to the integrated hidden state hv1 ∈ R

l×w×n with the same
channel dimension as a, yielding the global channel descriptor
of hv1. Afterward, dense layers with parametric rectify linear
unit (PReLU) [23] and sigmoid function were utilized to
compress the channel descriptor to a quarter of its original
length and then stretch it back, which allows mapping the
channel descriptor to channel attention mask Mch .

The middle branch achieves spatial attention. We used the
LSTM module with the voting strategy to produce hv2 ∈
R

l×w×K with a size of l×w in spatial dimensions and K in the
channel dimension. We reshaped hv2 to h′

v2 ∈ R
K×l×w with a

size of K × l × w in spatial dimensions, which is considered
the raw attention mask. The 3-D convolutional and transposed
convolutional layers with a kernel size of 3 and a PReLU
and sigmoid function were exploited to excite the raw mask,
resulting in the spatial attention mask M sp.

The remaining branch takes responsibility for FFD feature
refining with the residual blocks [24] as the backbone. The
2-D convolutional layers with a kernel size of 1 were used to
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make the channel dimensions of hv1, hv2, and a consistent.
Thus, we could transfer the supplementary information of
dimension-adjusted hidden states to the features of each slice
of a. Define the final output of the bottom branch as ar , and
the improved features of FFD slices al can be calculated as
follows:

al = ar ⊗ (
Mch ⊗ Msp + 1

)
. (2)

2) Gradient Guidance: As discussed in Section II, some
parts of 3DFFDs provide a significant contribution to the local-
ization task. The intensity peaks of amplitude distributions
and the central regions of phase distributions of 3DFFDs are
extremely sensitive to RT positions. The boundaries of con-
centric rings reflect essential structure information of 3DFFDs.
Since the large gradient regions of 3DFFDs correspond to
the aforementioned salient parts, we directly strengthened the
intermediate features derived from 3DFFDs’ large gradient
regions without the need for data-driven training to make these
representative parts have a great impact on final localization.

It is worth mentioning that, since the received signals
are severely undersampled noisy data of 3DFFDs, gradient
distributions reflect limited information about critical areas of
the undersampled 3DFFDs. The reconstructed results, on the
other hand, are of high quality, allowing for meaningful
gradient distributions. Therefore, the gradient guidances are
only applied in the attentional localization network.

For each RT’s position, the gradient distribution of the
3DFFD is calculated by the Sobel operator as

Gl = Â ∗
⎡
⎣−1 0 1

−2 0 2
−1 0 1

⎤
⎦, Gw = Â ∗

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦.

(3)

Â ∈ R
K×L×W refers to the original 3DFFD (amplitude or

phase distribution in this case) before fed into localization
network. ∗ here denotes the convolution operation. Gl and
Gw represent derivative approximations of Â in the length
and width direction, respectively. In order to reduce the
computational load, we adopted the sum of absolute values
to approximate the gradient magnitude as G = |Gl | + |Gw|.

Given the intermediate features of the 3DFFD, we can figure
out the linkages of all features to different patches of the same
size in the original 3DFFD based on the receptive field (RF)
theory [25]. The RF size means that the feature is associated
with an RF × RF region of 3DFFD. Since LSTM modules
and residual blocks in attention blocks with the kernel size
of 1 do not affect RF, RF of the feature in any hidden layers
can be calculated by iterating the following equation using the
initial value 1 for RF0 and s0:

RFm = RFm−1 + (ksm − 1)

m−1∏
j=0

s j (4)

where ks and s represent the kernel size and stride of the
convolutional layer, respectively. The subscripts m and j refer
to the mth and j th convolutional layers outside the attention
blocks. The expectation of the gradients of the receptive
RF×RF area is considered the essentiality score of the linked

Fig. 4. Illustration of the gradient guidances. Ma
g and M p

g denote the
guidance masks derived from the gradient distribution of amplitude distribu-
tion and that of phase distribution, respectively. (a) Guidance for amplitude,
(b) Guidance for phase.

feature, which is then normalized by the highest score among
all intermediate features. All normalized scores, which serve as
the guidance mask Ma

g for the amplitude distribution, operate
on al as follows:

ag
l = al ⊗ (

Ma
g + 1

)
. (5)

The phase central regions of the 3DFFD have strong ties
with the incident angle. Nevertheless, the corresponding inter-
mediate features have low essentiality scores since the gradient
distribution of the phase distribution could not identify the
central regions. Consequently, based on the position consis-
tency between phase central regions and amplitude peaks,
we employed amplitude and phase guidance masks simulta-
neously for the intermediate features of the phase distribution.
Fig. 4 shows the rule of gradient guidances.

B. Encoders for 3DFFDs

Encoders in reconstruction and localization networks aim
at extracting informative features of 3DFFDs, which permits
the reconstruction with authenticity and localization with high
precision. Given the 3DFFD under a certain incident angle
condition, the 2-D convolutional layers with learnable para-
meters activated by PReLUs were first implemented to search
for latent features of the FFD slices. In consideration of the
feature similarity between the FFD slices, the 2-D convolu-
tional layer used by one FFD slice shares the parameters with
other convolutional layers, which improves the computational
efficiency. Moreover, the attention mechanism was applied to
assign each intermediate feature a weight automatically to
improve the robustness of the intermediate features of FFD
slices. Meanwhile, the slices’ spatial dependencies and distrib-
ution features generated by LSTM modules were incorporated
into the intermediate features, which produces comprehensive
and detailed representations of the 3DFFD. It is worth noting
that, in the attentional localization network, we employed the
LSTM with voting strategy as the final step of encoding to
further extract the latent features and the dynamic intraslices’
relationships.

C. Decoder and Position Estimator

The goal of the decoder is to recover 3DFFDs from the
coded features. The decoder uses the 2-D transposed convo-
lutional layers with shared and learnable parameters activated
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by PReLUs to perform feature recovery of 3DFFDs in spa-
tial dimensions. Meanwhile, skip connections were utilized
between the encoder and the decoder to provide supplemen-
tary information for feature synthesizing. To achieve adaptive
recalibration of the intermediate synthesized features, we also
employed the LSTM-based attention block after the transposed
convolutional layers throughout the reconstruction process.

The position estimation is accomplished using an MLP,
which consists of three dense layers. Dense layers are acti-
vated by the PReLUs, except the last one that uses sigmoid
transformation. The MLP takes the combination of features
and dependencies of 3DFFDs extracted by two encoders as
the input and regresses the coded information to RT positions.

D. Loss Functions

By minimizing loss functions, i.e., the distances between
predicted results and the labels, we can optimize the learnable
parameters in the proposed model. As a result, the proposed
model provides a competitive performance on reconstruction
and localization tasks.

The reconstruction network was trained with the mean
square error (mse) loss �mse, which was exploited to constrain
the average differences between the reconstructed results and
true 3DFFDs in pixel lever. However, if solely focusing on
pixel lever similarity, the irregular abrupt changes caused by
the 2π phase jumps in phase distributions could make recon-
struction problematic. Consequently, we additionally took
advantage of the perceptual consistency loss �P [26] to boost
the reconstruction performance. The total loss �Rec of the
reconstructed result is calculated as

�Rec = �mse + �P (6)

where

�mse = μ1
1

KLW

∥∥∥Aa − Â
a
∥∥∥2

F
+ μ2

1

KLW

∥∥∥Ap − Â
p
∥∥∥2

F
(7)

and

�P = μ3

K

V∑
v=1

1

lvwvnv

∥∥∥gv

(
Ap

)
− gv

(
Â

p
)∥∥∥2

F
(8)

where A and Â ∈ R
K×L×W denote the true label and the

reconstructed result, respectively, and superscripts a and p
represent amplitude and phase distribution, respectively. ‖ · ‖F

refers to the Frobenius norm. In (8), gv(Ap) signifies abstract
features of the phase distribution extracted by the vth hidden
layer segment of the pretrained VGG19 [27], which are
considered an overall perception of the phase distribution.
Specifically, three segments of VGG19 are adopted, which are
the first convolution block, the first two convolution blocks,
and the first three convolution blocks of VGG19. To satisfy
the input dimension requirement of VGG19, we repeated the
FFD slices three times along the channel dimension and fed
the FFD slices into VGG19 in sequence, resulting in abstract
features ∈ R

K×lv×wv×nv , where K refers to slice number, and
lv , wv , and nv bound the size of output features of the vth
segment. μ1, μ2, and μ3 govern the effect of each part of the
loss function on parameter optimizing.

In order to achieve competitive performance for the localiza-
tion network, we aim at minimizing the integration of square
errors between the predicted angles and the angle labels, which
is calculated as follows:

�Loc = μ4
(
θ − θ̂

)2 + μ5
(
φ − φ̂

)2
(9)

where θ and φ denote the zenith and azimuth angles, respec-
tively, and θ̂ and φ̂ represent corresponding predicted results.
μ4 and μ5 control the effect of each angle loss on parameter
optimizing.

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

To facilitate the analysis, a scaled version of the FAST with
a 30-m-diameter aperture and a focal length to diameter ratio
of 0.467 using the 19-beam L-band receiver is selected for this
study [28]. FEKO 7.0 was used to simulate the 3DFFDs near
the reflector focus with various incident angles ranging from 0◦
to 4◦ in zenith with the interval of 0.1◦ and 0◦–360◦ in azimuth
with the interval of 5◦ at 1.25 GHz. The received signals,
i.e., undersampled 3DFFDs, were obtained by the 19-element
cluster feed sampling field distributions in the focal plane and
vicinity planes shifted up and down by λ. To evaluate the
robustness of the proposed model against noisy data, complex
Gaussian noise was added to undersampled 3DFFDs with the
signal-to-noise ratios (SNRs) ranging from −6 to 15 dB with a
3-dB interval. The corresponding reconstruction labels are 5×
21 ×21 sampled pixels of field distributions with λ/2 interval
between the adjacent slices and 0.054-m sampling interval
along other axes. To facilitate the model’s understanding of
the data, we normalized the amplitude distributions by the
maximum values and phase distributions by 2π . The randomly
shuffled dataset was split: 85% for training and 15% for
testing.

To evaluate the authenticity of the reconstructed 3DFFDs,
we adopt two of the most commonly used quantitative metrics
in the image reconstruction field: the peak SNR (PSNR) and
structural similarity (SSIM).

The mean angle (MA) between the true and predicted
direction vectors is used to evaluate the position estimation
performance, which is calculated as

MA = 1

N

N∑
i=1

� (
ζ i , ζ̂ i

)
(10)

where

� (
ζ i , ζ̂ i

) = arccos

(
ζ i ζ̂ i

|ζ i ||ζ̂ i |
)

= arccos
(

sinθi cosφi sinθ̂i cosφ̂i + sinθi sinφi

× sinθ̂i sinφ̂i + cosθi cosθ̂i

)
(11)

where ζ i refers to the unit vector in the direction of true RT
position and ζ̂ i is the corresponding prediction with our model.
N denotes the count of test samples. For each nonoverlapping
beam of the scaled FAST model, the positions of detected RTs
can be approximately limited to the angular region bounded
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TABLE II

RECONSTRUCTION PERFORMANCE OF THE PROPOSED
METHOD AND COUNTERPARTS

by the half-power beam solid angle [29], [30]. We neglect
the slight asymmetry of beams and differences between the
half-power beam widths (HPBWs) of beams caused by the
Coma effect and consider the HPBW of the central beam as
the angular resolution of the telescope system. In this study,
the HPBW of the central beam is 0.554◦, which was obtained
by GRASP 10.3.0 under the condition of full Gaussian illu-
mination of the aperture. Hence, when choosing a position
in the angular region as the localization result, the lower
bound of the localization error is 0◦, and the upper bound is
0.554◦. To facilitate the comparison with the proposed method,
we select 0.277◦ as the reference value of the localization error
of the scaled FAST model.

FOV refers to the instantaneously observable region of
the radio telescope. Since the HPBWs of adjacent beams
of the scaled FAST model do not overlap, the FOV could
be calculated as FOV= N f � with ignoring small variations
within beams. N f denotes the number of feed elements. � is
the half-power beam solid angle of the central beam, which is
equal to

∫ 360π/180
0

∫ 0.277π/180
0 sinα dα dβ steradians. The FOV

of the scaled FAST model is about 1.40×10−3 steradians and
4.58 in square degrees.

B. Training Procedure
First, the attentional reconstruction network was optimized

by minimizing �Rec based on the minibatch stochastic gradient
descent, which was performed by the Adam optimizer with the
default setting [31]. We trained the model with a minibatch
size of 32, and an initial learning rate of 1 × 10−4 decreased
by a factor of 10 every 40 epochs until model convergence
was reached.

In the next stage, the localization network was attached
to the reconstruction network. The integrated network was
also trained using Adam optimizer by minimizing �Loc with a
minibatch size of 32 and an initial learning rate of 1×10−5 that
declined tenfold every 40 epochs. Instead of fixing the learned
parameters in the first stage, we fine-tuned these parameters at
a relatively lower learning rate, which makes our model more
flexible. In both stages, we dynamically regulated μ in (7)–(9)
to ensure that each component of the loss functions contributes
equally to the optimization process.

C. Reconstruction Performance

Table II compares the average reconstruction performance
of the proposed reconstruction method and the counterparts
(i.e., reconstructing amplitude and phase separately, and recon-
structing only with mse loss) on the test dataset. Rows 3 and

4 correspond to amplitude and phase distributions, respec-
tively. The reconstruction results of amplitude distributions
outperform those of the phase distributions. This is due to
that the phase distributions do not have the same intensity
tapering property as amplitude distributions. Thus, drastically
undersampled phase distributions contain relatively less pat-
tern information. As can be seen from the first and third
columns, the synchronous reconstruction method achieves
better performance compared with the separate reconstruction
method, especially for phase distributions that have a big
jump in authenticity. It demonstrates that the synchronous
reconstruction strategy can leverage the knowledge used for
one distribution reconstruction to assist the other distribution
reconstruction. Moreover, it can be seen from the last two
columns that the supervision of perceptual consistency can
improve not only the reconstruction performance of phase
distributions but also that of amplitude distributions by a small
margin.

Fig. 5 presents the examples of reconstruction under various
RT position conditions at SNR = 15 dB. By comparing the
ground truths and reconstructed results of amplitude distri-
butions, we can see that the distortions of the amplitude
distributions mainly occur in the side lobes. Besides, Fig. 5(c)
indicates that the sidelobe with extremely low intensity may
not be reconstructed. For the reconstructed phase distributions,
the distortions are manifested as the introduction of noise
signals in relatively flat regions. We can see that, despite minor
defects occurring in the reconstructed distributions, they do not
give a significant impact on the reconstruction results of both
the amplitude and phase distributions under various incident
angle conditions. Thus, these amplitude and phase data can
make the localization robust in the second stage. In addition,
the results show strong correlations between the central regions
of FFD slices and the RT positions. With increasing the
zenith angle, the central regions of both amplitude and phase
distributions deviate from the slices. When the azimuth angle
changes, the amplitude and phase distributions are rotated
accordingly.

D. Localization Performance

1) Effects of FFD Slice Numbers: Table III compares the
average localization performance on the test dataset with
different numbers of reconstructed FFD slices. “1 slice” rep-
resents the slice on the focal plane. “3 slices” refers to slices
on the focal plane and λ offset planes (toward and away from
the reflector). “5 slices” has one more slice on λ/2 offset
plane (toward the reflector) than “4 slices”. By analogy, λ/4
offset plane (away from the reflector) for “6 slices”, and λ/4
offset plane (toward the reflector) for “7 slices.” Results show
that the localization using merely a focal plane slice has the
worst performance. The localization performance could be
considerably improved by utilizing more FFD slices, which
contains more spatial features and dependencies, whereas
the performance has substantially remained unchanged when
using more than five FFD slices. This is attributed to the fact
that the received signals carry a finite amount of information
regarding 3DFFDs, which determines the upper bound of
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Fig. 5. Examples of reconstruction. The first two columns are amplitude slices, and the others are phase slices. (a) corresponds to the FFD slice on the focal
plane under θ = 0◦ , φ = 0◦ condition. (b) Focal plane, θ = 2◦, φ = 0◦. (c) λ/2 offset plane (away from the reflector), θ = 2◦ , φ = 45◦ . (d) λ offset plane
(away from the reflector), θ = 4◦ , φ = 90◦ .

TABLE III

MEAN LOCALIZATION ERRORS WITH THE VARIATION OF SLICE NUMBERS

localization accuracy. In order to release the computational
burden, the number of slices was set to 5 in this research.

2) Ablation Experiments: To demonstrate the effectiveness
of the proposed LSTM-based attention block, we investigated
the effects of attention block ablations on the localization
performance of the proposed GGAN. We retained the feature
refining branch and only wiped off attention branches (i.e.,
al = ar ). The obtained results are tabulated in Table IV, where
Encoder1, Encoders2, and Decoder represent the removal of all
attention blocks in the encoder of the reconstruction network,
that in encoders of localization network, and that in the
decoder, respectively. As can be seen from Tabel IV, no mat-
ter where the attention blocks are removed, the localization

TABLE IV

MEAN LOCALIZATION ERRORS WITH ATTENTION BLOCK ABLATIONS IN

DIFFERENT PARTS OF GGAN

performance suffers accordingly, indicating that the proposed
attention block could assist in feature coding and synthesizing.

3) Comparisons With Attention-Based Methods: We com-
pared the localization performance of the proposed GGAN
and LSTM-based attentional network (LSTM-AN, i.e., GGAN
without gradient guidances) with two attention-replaced net-
works. These two networks are the results of replacing all
the attention blocks of LSTM-AN with two competing atten-
tion strategies: 1) the convolutional block attention module
(CBAM) [16] that employs channel attention and spatial
attention sequentially based on the intermediate features and
2) squeeze-and-excitation (SE) block [18] that aims at achiev-
ing attention in the channel domain by exploring the channel
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Fig. 6. Localization performance of attention-based methods with the variation of SNRs. (a) corresponds to region 1. (b) corresponds to region 2.
(c) corresponds to region 3. (d) corresponds to region 4.

descriptors. To fairly compare those methods, CBAM and SE
blocks were equipped with the same feature refining branch
as our proposed attention block. In other words, ar was
elementwisely multiplied by the attention masks generated
by the competing attention methods. To provide qualitative
analysis, we divided RT positions into four regions according
to the central regions of 3DFFDs: region 1 with zenith angles
between 0◦ and 1◦ (central regions in the reconstructed slices),
region 2 with zenith angles between 1◦ and 2◦ (slightly out
of the slices), region 3 with zenith angles between 2◦ and 3◦
(out of the slices), and region 4 with zenith angles between
3◦ and 4◦ (farthest from the slices).

Fig. 6 shows the localization performance curves concerning
SNRs. As we can see, the average localization errors of all
methods decrease sharply at low SNRs and decrease relatively
slowly when the SNRs are above 6 dB. Meanwhile, the
average localization errors increase significantly as the zenith
angle increases, which demonstrates that the central regions of
3DFFDs play an important role in the localization task. Instead
of only exploring spatial features of 3DFFDs to achieve atten-
tion inference, our methods also consider spatial relationships

within 3DFFDs. Hence, LSTM-AN and GGAN achieve more
robust performance against noisy data compared with the
CBAM network (CBAM-NET) and the SE network (SE-NET).
Moreover, since the enhancement of the salient central regions
and boundaries of 3DFFDs, the gradient guidances further
lower localization errors. Compared with the radio telescope’s
localization error (i.e., 0.277◦ in this experiment), the proposed
GGAN could achieve lower localization error in regions 1 and
2 at SNRs greater than −3 dB and in regions 3 and 4 at
SNRs greater than 3 dB, which indicates excellent localization
performance of the proposed GGAN method when the zenith
angle ranges between 0◦ and 2◦ and satisfactory localization
performance under relatively high SNR condition when the
zenith angle ranges between 2◦ and 4◦. Since the GGAN
method achieves better localization accuracy compared with
the inherent localization accuracy of the scaled FAST model
when the zenith angle ranges between 0◦ and 4◦ and the
azimuth angle ranges between 0◦ and 360◦, the FOV of
the GGAN method is

∫ 360π/180
0

∫ 4π/180
0 sinα dα dβ steradians,

which approximately is 50.25 in square degrees, a 10.97 times
improvement than the radio telescope’s FOV.
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V. CONCLUSION

This article presents a GGAN to improve localization accu-
racy for RTs by exploring 3DFFDs. The first component of
the proposed GGAN is the attentional reconstruction network,
which can be used to construct higher-resolution 3DFFDs from
undersampled 3DFFDs. The attentional localization network,
as the second part, aims at estimating RTs’ positions accord-
ing to the reconstructed results. The attention block in GGAN
enables attention inference based on spatial features and
intraslices’ relationships of 3DFFDs generated by the LSTM
with the voting strategy module. The gradient distributions
of reconstructed 3DFFDs provide a guide for the attention
block in the localization network without the need for data-
driven training. This allows the salient elements of 3DFFDs
to significantly influence the prediction of the RT’s position.
Experiments have shown that the proposed model not only
outperforms the radio telescope’s angular resolution but also
broadens the FOV of the radio telescope.
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