62,650 research outputs found
Crystal Growth in Fluid Flow: Nonlinear Response Effects
We investigate crystal-growth kinetics in the presence of strong shear flow
in the liquid, using molecular-dynamics simulations of a binary-alloy model.
Close to the equilibrium melting point, shear flow always suppresses the growth
of the crystal-liquid interface. For lower temperatures, we find that the
growth velocity of the crystal depends non-monotonically on the shear rate.
Slow enough flow enhances the crystal growth, due to an increased particle
mobility in the liquid. Stronger flow causes a growth regime that is nearly
temperature-independent, in striking contrast to what one expects from the
thermodynamic and equilibrium kinetic properties of the system, which both
depend strongly on temperature. We rationalize these effects of flow on crystal
growth as resulting from the nonlinear response of the fluid to strong shearing
forces.Comment: to appear in Phys. Rev. Material
Wormhole Effect in a Strong Topological Insulator
An infinitely thin solenoid carrying magnetic flux Phi (a `Dirac string')
inserted into an ordinary band insulator has no significant effect on the
spectrum of electrons. In a strong topological insulator, remarkably, such a
solenoid carries protected gapless one-dimensional fermionic modes when
Phi=hc/2e. These modes are spin-filtered and represent a distinct bulk
manifestation of the topologically non-trivial insulator. We establish this
`wormhole' effect by both general qualitative considerations and by numerical
calculations within a minimal lattice model. We also discuss the possibility of
experimental observation of a closely related effect in artificially engineered
nanostructures.Comment: 4 pages, 3 figures. For related work and info visit
http://www.physics.ubc.ca/~fran
Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges
As a promising paradigm for fifth generation (5G) wireless communication
systems, cloud radio access networks (C-RANs) have been shown to reduce both
capital and operating expenditures, as well as to provide high spectral
efficiency (SE) and energy efficiency (EE). The fronthaul in such networks,
defined as the transmission link between a baseband unit (BBU) and a remote
radio head (RRH), requires high capacity, but is often constrained. This
article comprehensively surveys recent advances in fronthaul-constrained
C-RANs, including system architectures and key techniques. In particular, key
techniques for alleviating the impact of constrained fronthaul on SE/EE and
quality of service for users, including compression and quantization,
large-scale coordinated processing and clustering, and resource allocation
optimization, are discussed. Open issues in terms of software-defined
networking, network function virtualization, and partial centralization are
also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin
note: text overlap with arXiv:1407.3855 by other author
Breakdown of adiabatic invariance in spherical tokamaks
Thermal ions in spherical tokamaks have two adiabatic invariants: the
magnetic moment and the longitudinal invariant. For hot ions, variations in
magnetic-field strength over a gyro period can become sufficiently large to
cause breakdown of the adiabatic invariance. The magnetic moment is more
sensitive to perturbations than the longitudinal invariant and there exists an
intermediate regime, super-adiabaticity, where the longitudinal invariant
remains adiabatic, but the magnetic moment does not. The motion of
super-adiabatic ions remains integrable and confinement is thus preserved.
However, above a threshold energy, the longitudinal invariant becomes
non-adiabatic too, and confinement is lost as the motion becomes chaotic. We
predict beam ions in present-day spherical tokamaks to be super-adiabatic but
fusion alphas in proposed burning-plasma spherical tokamaks to be
non-adiabatic.Comment: 6 pages, 8 figure
Erratum : Squeezing and entanglement delay using slow light
An inconsistency was found in the equations used to calculate the variance of
the quadrature fluctuations of a field propagating through a medium
demonstrating electromagnetically induced transparency (EIT). The decoherence
term used in our original paper introduces inconsistency under weak probe
approximation. In this erratum we give the Bloch equations with the correct
dephasing terms. The conclusions of the original paper remain the same. Both
entanglement and squeezing can be delayed and preserved using EIT without
adding noise when the decoherence rate is small.Comment: 1 page, no figur
Collective Almost Synchronization in Complex Networks
This work introduces the phenomenon of Collective Almost Synchronization
(CAS), which describes a universal way of how patterns can appear in complex
networks even for small coupling strengths. The CAS phenomenon appears due to
the existence of an approximately constant local mean field and is
characterized by having nodes with trajectories evolving around periodic stable
orbits. Common notion based on statistical knowledge would lead one to
interpret the appearance of a local constant mean field as a consequence of the
fact that the behavior of each node is not correlated to the behaviors of the
others. Contrary to this common notion, we show that various well known weaker
forms of synchronization (almost, time-lag, phase synchronization, and
generalized synchronization) appear as a result of the onset of an almost
constant local mean field. If the memory is formed in a brain by minimising the
coupling strength among neurons and maximising the number of possible patterns,
then the CAS phenomenon is a plausible explanation for it.Comment: 3 figure
- …
