31 research outputs found

    Cellular binding partners of the human papillomavirus E6 protein

    Get PDF
    The high-risk strains of human papillomavirus (HR-HPV) are known to be causative agents of cervical cancer and have recently also been implicated in cancers of the oropharynx. E6 is a potent oncogene of HR-HPVs, and its role in the progression to malignancy has been and continues to be explored. E6 is known to interact with and subsequently inactivate numerous cellular proteins pivotal in the mediation of apoptosis, transcription of tumor suppressor genes, maintenance of epithelial organization, and control of cell proliferation. Binding of E6 to these proteins cumulatively contributes to the oncogenic potential of HPV. This paper provides an overview of these cellular protein partners of HR-E6, the motifs known to mediate oncoprotein binding, and the agents that have the potential to interfere with E6 expression and activity and thus prevent the subsequent progression to oncogenesis

    Selenium Attenuates HPV-18 Associated Apoptosis in Embryo-Derived Trophoblastic Cells but Not Inner Cell Mass In Vitro

    No full text
    Objectives. Human papillomaviruses (HPV) are associated with cell cycle arrest. This study focused on antioxidant selenomethionine (SeMet) inhibition of HPV-mediated necrosis. The objectives were to determine HPV-18 effects on embryonic cells and to evaluate SeMet in blocking HPV-18 effects. Methods. Fertilized mouse embryos were cultured for 5 days to implanted trophoblasts and exposed to either control medium (group 1), HPV-18 (group 2), combined HPV-18 and 0.5 µM SeMet (group 3), or combined HPV-18 and 5.0 µM SeMet (group 4). After 48 hrs, trophoblast integrity and, apoptosis/necrosis were assessed using morphometric and dual-stain fluorescence assays, respectively. Results. HPV-18 exposed trophoblasts nuclei (253.8 ± 28.5 sq·µ) were 29% smaller than controls (355.6 ± 35.9 sq·µ). Supplementation with 0.5 and 5.0 µM SeMet prevented nuclear shrinkage after HPV-18 exposure. HPV-18 infected trophoblasts remained larger with SeMet supplementation. HPV-18 decreased cell viability by 44% but SeMet supplementation sustained cell viability. Apoptosis was lower when SeMet was present. HPV-18 decreased inner cell mass (ICM) viability by over 60%. Conclusions. HPV-18 decreased nuclear size and trophoblast viability but these effects were attenuated by the antioxidant SeMet. SeMet blocked HPV-18 associated apoptosis process in trophoblasts but not ICM cells suggesting involvement of different oxidative stress pathways

    The Full-Length Isoform of Human Papillomavirus 16 E6 and Its Splice Variant E6* Bind to Different Sites on the Procaspase 8 Death Effector Domain▿

    No full text
    Human papillomavirus 16 is a causative agent of most cases of cervical cancer and has also been implicated in the development of some head and neck cancers. The early viral E6 gene codes for two alternatively spliced isoforms, E6large and E6*. We have previously demonstrated the differential effects of E6large and E6* binding on the expression and stability of procaspase 8, a key mediator of the apoptotic pathway. Additionally, we have reported that E6 binds to the FADD death effector domain (DED) at a novel E6 binding domain. Sequence similarities between the FADD and procaspase 8 DEDs suggested a specific region for E6large/procaspase 8 binding, which was subsequently confirmed by mutational analysis as well as by the ability of peptides capable of blocking E6/FADD binding to also block E6large/caspase 8 binding. However, the binding of the smaller isoform, E6*, to procaspase 8 occurs at a different region, as deletion and point mutations that disrupt E6large/caspase 8 DED binding do not disrupt E6*/caspase 8 DED binding. In addition, peptide inhibitors that can block E6large/procaspase 8 binding do not affect the binding of E6* to procaspase 8. These results demonstrate that the residues that mediate E6*/procaspase 8 DED binding localize to a different region on the protein and employ a separate binding motif. This provides a molecular explanation for our initial findings that the two E6 isoforms affect procaspase 8 stability in an opposing manner

    A high-content AlphaScreen™ identifies E6-specific small molecule inhibitors as potential therapeutics for HPV head and neck squamous cell carcinomas

    No full text
    The incidence of human papillomavirus-positive head and neck squamous cell carcinoma (HPV-HNSCC) has increased dramatically over the past decades due to an increase in infection of the oral mucosa by HPV. The etiology of HPV-HNSCC is linked to expression of the HPV oncoprotein, E6, which influences tumor formation, growth and survival. E6 effects this oncogenic phenotype in part through inhibitory protein-protein interactions (PPIs) and accelerated degradation of proteins with tumor suppressor properties, such as p53 and caspase 8. Interfering with the binding between E6 and its cellular partners may therefore represent a reasonable pharmacological intervention in HPV tumors. In this study, we probed a small-molecule library using AlphaScreen™ technology to discover novel E6 inhibitors. Following a cascade of screens we identified and prioritized one hit compound. Structure activity relationship (SAR) studies of this lead uncovered an analog, 30-hydroxygambogic acid (GA-OH), that displayed improved activity. Further testing of this analog in a panel of HPV and HPV cell lines showed good potency and a large window of selectivity as demonstrated by apoptosis induction and significant inhibition of cell growth, cell survival in HPV cells. In summary, GA-OH may serve as a starting point for the development of potent E6-specific inhibitors

    The Interaction between Human Papillomavirus Type 16 and FADD Is Mediated by a Novel E6 Binding Domain▿

    No full text
    High-risk strains of human papillomavirus, such as types 16 and 18, have been etiologically linked to cervical cancer. Most cervical cancer tissues are positive for both the E6 and E7 oncoproteins, since it is their cooperation that results in successful transformation and immortalization of infected cells. We have reported that E6 binds to tumor necrosis factor receptor 1 and to Fas-associated death domain (FADD) and, in doing so, prevents E6-expressing cells from responding to apoptotic stimuli. The binding site of E6 to FADD localizes to the first 23 amino acids of FADD and has now been further characterized by the use of deletion and site-directed mutants of FADD in pull-down and functional assays. The results from these experiments revealed that mutations of serine 16, serine 18, and leucine 20 obstruct FADD binding to E6, suggesting that these residues are part of the E6 binding domain on FADD. Because FADD does not contain the two previously identified E6 binding motifs, the LxxφLsh motif, and the PDZ motif, a novel binding domain for E6 has been identified on FADD. Furthermore, peptides that correspond to this region can block E6/FADD binding in vitro and can resensitize E6-expressing cells to apoptotic stimuli in vivo. These results demonstrate the existence of a novel E6 binding domain

    Complexes of Human Papillomavirus Type 16 E6 Proteins Form Pseudo-Death-Inducing Signaling Complex Structures during Tumor Necrosis Factor-Mediated Apoptosis▿

    No full text
    High-risk strains of human papillomavirus (HPV) such as HPV type 16 (HPV16) and HPV18 are causative agents of most human cervical carcinomas. E6, one of the oncogenes encoded by HPV16, possesses a number of biological and transforming functions. We have previously shown that the binding of E6 to host apoptotic proteins such as tumor necrosis factor (TNF) R1, the adaptor protein FADD, and procaspase 8 results in a significant modification of the normal flow of apoptotic events. For example, E6 can bind to and accelerate the degradation of FADD. In addition, full-length E6 binds to the TNF R1 death domain and can also bind to and accelerate the degradation of procaspase 8. In contrast, the binding of small splice isoforms known as E6* results in the stabilization of procaspase 8. In this report, we propose a model for the ability of HPV16 E6 to both sensitize and protect cells from TNF as well as to protect cells from Fas. We demonstrate that both the level of E6 expression and the ratio between full-length E6 and E6* are important factors in the modification of the host extrinsic apoptotic pathways and show that at high levels of E6 expression, the further sensitization of U2OS, NOK, and Ca Ski cells to TNF-mediated apoptosis is most likely due to the formation of a pseudo-death-inducing signaling complex structure that includes complexes of E6 proteins

    ATM and ATR: Sensing DNA damage

    No full text

    Methylomes in Vegans versus Pescatarians and Nonvegetarians

    No full text
    Epigenetic studies in animal models have demonstrated that diet affects gene regulation by altering methylation patterns. We interrogated methylomes in humans who have different sources of protein in their diet. We compared methylation of DNA isolated from buffy coat in 38 vegans, 41 pescatarians and 68 nonvegetarians. Methylation data were obtained using Infinium HumanMethylation450 arrays and analyzed using the Partek Genomic software. Differences in differentially methylated sites were small, though with the use of relaxed statistical tests we did identify diet-associated differences. To further test the validity of these observations, we performed separate and independent comparisons of the methylation differences between vegans and nonvegetarians, and between vegans and pescatarians. The detected differences were then examined to determine if they were enriched in specific pathways. Pathway analysis revealed enrichment of several specific processes, including homeobox transcription and glutamate transport. The detected differences in DNA methylation patterns between vegans, pescatarians, and nonvegetarians enabled us to identify 77 CpG sites that may be sensitive to diet and/or lifestyle, though high levels of individual-specific differences were also noted
    corecore