1,023 research outputs found
Improved Dark Energy Detection through the Polarization-assisted WMAP-NVSS ISW Correlation
Integrated Sachs-Wolfe (ISW) effect can be estimated by cross-correlating
Cosmic Microwave Background (CMB) sky with tracers of the local matter
distribution. At late cosmic time, the dark energy induced decay of gravitation
potential generates a cross-correlation signal on large angular scales. The
dominant noise are the intrinsic CMB anisotropies from the inflationary epoch.
In this Letter we use CMB polarization to reduce this intrinsic noise. We
cross-correlate the microwave sky observed by Wilkinson Microwave Anisotropy
Probe (WMAP) with the radio source catalog compiled by NRAO VLA Sky Survey
(NVSS) to study the efficiency of the noise suppression . We find that the
error bars are reduced about 5-12 %, improving the statistical power.Comment: 10 pages, 2 figure
Generating Cosmological Gaussian Random Fields
We present a generic algorithm for generating Gaussian random initial
conditions for cosmological simulations on periodic rectangular lattices. We
show that imposing periodic boundary conditions on the real-space correlator
and choosing initial conditions by convolving a white noise random field
results in a significantly smaller error than the traditional procedure of
using the power spectrum. This convolution picture produces exact correlation
functions out to separations of L/2, where L is the box size, which is the
maximum theoretically allowed. This method also produces tophat sphere
fluctuations which are exact at radii . It is equivalent to
windowing the power spectrum with the simulation volume before discretizing,
thus bypassing sparse sampling problems. The mean density perturbation in the
volume is no longer constrained to be zero, allowing one to assemble a large
simulation using a series of smaller ones. This is especially important for
simulations of Lyman- systems where small boxes with steep power
spectra are routinely used.
We also present an extension of this procedure which generates exact initial
conditions for hierarchical grids at negligible cost.Comment: 12 pages incl 3 figures, accepted in ApJ Letter
The Cosmic Microwave Background & Inflation, Then & Now
Boomerang, Maxima, DASI, CBI and VSA significantly increase the case for
accelerated expansion in the early universe (the inflationary paradigm) and at
the current epoch (dark energy dominance), especially when combined with data
on high redshift supernovae (SN1) and large scale structure (LSS). There are
``7 pillars of Inflation'' that can be shown with the CMB probe, and at least
5, and possibly 6, of these have already been demonstrated in the CMB data: (1)
a large scale gravitational potential; (2) acoustic peaks/dips; (3) damping due
to shear viscosity; (4) a Gaussian (maximally random) distribution; (5)
secondary anisotropies; (6) polarization. A 7th pillar, anisotropies induced by
gravity wave quantum noise, could be too small. A minimal inflation parameter
set, \omega_b,\omega_{cdm}, \Omega_{tot}, \Omega_Q,w_Q,n_s,\tau_C, \sigma_8},
is used to illustrate the power of the current data. We find the CMB+LSS+SN1
data give \Omega_{tot} =1.00^{+.07}_{-.03}, consistent with (non-baroque)
inflation theory. Restricting to \Omega_{tot}=1, we find a nearly scale
invariant spectrum, n_s =0.97^{+.08}_{-.05}. The CDM density, \Omega_{cdm}{\rm
h}^2 =.12^{+.01}_{-.01}, and baryon density, \Omega_b {\rm h}^2 =
>.022^{+.003}_{-.002}, are in the expected range. (The Big Bang nucleosynthesis
estimate is 0.019\pm 0.002.) Substantial dark (unclustered) energy is inferred,
\Omega_Q \approx 0.68 \pm 0.05, and CMB+LSS \Omega_Q values are compatible with
the independent SN1 estimates. The dark energy equation of state, crudely
parameterized by a quintessence-field pressure-to-density ratio w_Q, is not
well determined by CMB+LSS (w_Q < -0.4 at 95% CL), but when combined with SN1
the resulting w_Q < -0.7 limit is quite consistent with the w_Q=-1 cosmological
constant case.Comment: 20 pages, 8 figures, in Theoretical Physics, MRST 2002: A Tribute to
George Libbrandt (AIP), eds. V. Elias, R. Epp, R. Myer
A Causal Source which Mimics Inflation
How unique are the inflationary predictions for the cosmic microwave
anisotropy pattern? In this paper, it is asked whether an arbitrary causal
source for perturbations in the standard hot big bang could effectively mimic
the predictions of the simplest inflationary models. A surprisingly simple
example of a `scaling' causal source is found to closely reproduce the
inflationary predictions. This letter extends the work of a previous paper
(ref. 6) to a full computation of the anisotropy pattern, including the Sachs
Wolfe integral. I speculate on the possible physics behind such a source.Comment: 4 pages, RevTex, 3 figure
Recovery of the Shape of the Mass Power Spectrum from the Lyman-alpha Forest
We propose a method for recovering the shape of the mass power spectrum on
large scales from the transmission fluctuations of the Lyman-alpha forest,
which takes into account directly redshift-space distortions. The procedure, in
discretized form, involves the inversion of a triangular matrix which projects
the mass power spectrum in 3-D real-space to the transmission power spectrum in
1-D redshift-space. We illustrate the method by performing a linear calculation
relating the two. A method that does not take into account redshift-space
anisotropy tends to underestimate the steepness of the mass power spectrum, in
the case of linear distortions. The issue of the effective bias-factor for the
linear distortion kernel is discussed.Comment: 18 pages, 4 figures; minor revision
The Sunyaev Zel'dovich effect: simulation and observation
The Sunyaev Zel'dovich effect (SZ effect) is a complete probe of ionized
baryons, the majority of which are likely hiding in the intergalactic medium.
We ran a CDM simulation using a moving mesh hydro code to
compute the statistics of the thermal and kinetic SZ effect such as the power
spectra and measures of non-Gaussianity. The thermal SZ power spectrum has a
very broad peak at multipole with temperature fluctuations
K. The power spectrum is consistent with available
observations and suggests a high and a possible role of
non-gravitational heating. The non-Gaussianity is significant and increases the
cosmic variance of the power spectrum by a factor of for .
We explore optimal driftscan survey strategies for the AMIBA CMB
interferometer and their dependence on cosmology. For SZ power spectrum
estimation, we find that the optimal sky coverage for a 1000 hours of
integration time is several hundred square degrees. One achieves an accuracy
better than 40% in the SZ measurement of power spectrum and an accuracy better
than 20% in the cross correlation with Sloan galaxies for . For
cluster searches, the optimal scan rate is around 280 hours per square degree
with a cluster detection rate 1 every 7 hours, allowing for a false positive
rate of 20% and better than 30% accuracy in the cluster SZ distribution
function measurement.Comment: 34 pages, 20 figures. Submitted to ApJ. Simulation maps have been
replaced by high resolution images. For higher resolution color images,
please download from http://www.cita.utoronto.ca/~zhangpj/research/SZ/ We
corrected a bug in our analysis. the SZ power spectrum decreases 50% and y
parameter decrease 25
Statistical Power, the Bispectrum and the Search for Non-Gaussianity in the CMB Anisotropy
We use simulated maps of the cosmic microwave background anisotropy to
quantify the ability of different statistical tests to discriminate between
Gaussian and non-Gaussian models. Despite the central limit theorem on large
angular scales, both the genus and extrema correlation are able to discriminate
between Gaussian models and a semi-analytic texture model selected as a
physically motivated non-Gaussian model. When run on the COBE 4-year CMB maps,
both tests prefer the Gaussian model. Although the bispectrum has comparable
statistical power when computed on the full sky, once a Galactic cut is imposed
on the data the bispectrum loses the ability to discriminate between models.
Off-diagonal elements of the bispectrum are comparable to the diagonal elements
for the non-Gaussian texture model and must be included to obtain maximum
statistical power.Comment: Accepted for publication in ApJ; 20 pages, 6 figures, uses AASTeX
v5.
Conservation Laws and Cosmological Perturbations in Curved Universes
When working in synchronous gauges, pseudo-tensor conservation laws are often
used to set the initial conditions for cosmological scalar perturbations, when
those are generated by topological defects which suddenly appear in an up to
then perfectly homogeneous and isotropic universe. However those conservation
laws are restricted to spatially flat (K=0) Friedmann-Lema\^\i tre spacetimes.
In this paper, we first show that in fact they implement a matching condition
between the pre- and post- transition eras and, in doing so, we are able to
generalize them and set the initial conditions for all . Finally, in the
long wavelength limit, we encode them into a vector conservation law having a
well-defined geometrical meaning.Comment: 15 pages, no figure, to appear in Phys. Rev.
The Sunyaev-Zeldovich effect in CMB-calibrated theories applied to the Cosmic Background Imager anisotropy power at l > 2000
We discuss the nature of the possible high-l excess in the Cosmic Microwave
Background (CMB) anisotropy power spectrum observed by the Cosmic Background
Imager (CBI). We probe the angular structure of the excess in the CBI deep
fields and investigate whether it could be due to the scattering of CMB photons
by hot electrons within clusters, the Sunyaev-Zeldovich (SZ) effect. We
estimate the density fluctuation parameters for amplitude, sigma_8, and shape,
Gamma, from CMB primary anisotropy data and other cosmological data. We use the
results of two separate hydrodynamical codes for Lambda-CDM cosmologies,
consistent with the allowed sigma_8 and Gamma values, to quantify the expected
contribution from the SZ effect to the bandpowers of the CBI experiment and
pass simulated SZ effect maps through our CBI analysis pipeline. The result is
very sensitive to the value of sigma_8, and is roughly consistent with the
observed power if sigma_8 ~ 1. We conclude that the CBI anomaly could be a
result of the SZ effect for the class of Lambda-CDM concordance models if
sigma_8 is in the upper range of values allowed by current CMB and Large Scale
Structure (LSS) data.Comment: Accepted by The Astrophysical Journal; 17 pages including 12 color
figures. v2 matches accepted version. Additional information at
http://www.astro.caltech.edu/~tjp/CBI
- âŠ