18 research outputs found

    PNU-120596, a positive allosteric modulator of α7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidineinduced cognitive deficit in the attentional set-shifting task in female rats

    Get PDF
    yThe α7 nicotinic acetylcholine receptors (nAChRs) have been highlighted as a target for cognitive enhancement in schizophrenia. Adult female hooded Lister rats received sub-chronic phencyclidine (PCP) (2mg/kg) or vehicle i.p. twice daily for 7 days, followed by 7 days’ washout. PCP-treated rats then received PNU-120596 (10mg/kg; s.c.) or saline and were tested in the attentional set-shifting task. Sub-chronic PCP produced a significant cognitive deficit in the extra-dimensional shift (EDS) phase of the task (p < 0.001, compared with vehicle). PNU-120596 significantly improved performance of PCP-treated rats in the EDS phase of the attentional set-shifting task (p < 0.001). In conclusion, these data demonstrate that PNU-120596 improves cognitive dysfunction in our animal model of cognitive dysfunction in schizophrenia, most likely via modulation of α7 nACh receptors.This work was partially funded by Johnson & Johnson Pharmaceutical Research and Development

    Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha 2 in the function of the native receptor

    No full text
    Glutamate-gated chloride (GluCl) channels are the site of action of the anthelmintic ivermectin. Previously, the Xenopus laevis oocyte expression system has been used to characterize GluCl channels cloned from Caenorhabditis elegans. However, information on the native, pharmacologically relevant receptors is lacking. Here, we have used a quantitative pharmacological approach and intracellular recording techniques of C. elegans pharynx to characterize them. The glutamate response was a rapidly desensitizing, reversible, chloride-dependent depolarization (EC50 = 166 µM), only weakly antagonized by picrotoxin. The order of potency of agonists was ibotenate &gt; L-glutamate &gt; kainate = quisqualate. Ivermectin potently and irreversibly depolarized the muscle (EC50 = 2.7 nM). No further depolarization was seen with coapplication of maximal glutamate during the maximal ivermectin response, indicating that ivermectin depolarizes the muscle by the same ionic mechanism as glutamate (i.e., chloride). The potency of ivermectin on the pharynx was greater than at any of the GluCl subunits expressed in X. laevis oocytes. This effect of ivermectin was abolished in the mutant avr-15, which lacks a functional GluCl-alpha 2 subunit. However, a chloride-dependent, nondesensitizing response to glutamate persisted. Therefore, the GluCl-alpha 2 subunit confers ivermectin sensitivity and a high-affinity desensitizing glutamate response on the native pharyngeal GluCl receptor

    Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans

    No full text
    The pharynx of C. elegans is a rhythmically active muscle that pumps bacteria into the gut of the nematode. This activity is maintained by action potentials, which qualitatively bear a resemblance to vertebrate cardiac action potentials. Here, the ionic basis of the resting membrane potential and pharyngeal action potential has been characterized using intracellular recording techniques. The resting membrane potential is largely determined by a K+ permeability, and a ouabain-sensitive, electrogenic pump. As previously suggested, the action potential is at least partly dependent on voltage-gated Ca2+ channels, as the amplitude was increased as extracellular Ca2+ was increased, and decreased by L-type Ca2+ channel blockers verapamil and nifedipine. Barium caused a marked prolongation of action potential duration, suggesting that a calcium-activated K+ current may contribute to repolarization. Most notably, however, we found that action potentials were abolished in the absence of external Na+. This may be due, at least in part, to a Na+-dependent pacemaker potential. In addition, the persistence of action potentials in nominally free Ca2+, the inhibition by Na+ channel blockers procaine and quinidine, and the increase in action potential frequency caused by veratridine, a toxin that alters activation of voltage-gated Na+ channels, point to the involvement of a voltage-gated Na+ current. Voltage-clamp analysis is required for detailed characterization of this current, and this is in progress. Nonetheless, these observations are quite surprising in view of the lack of any obvious candidate genes for voltage-gated Na+ channels in the C. elegans genome. It would therefore be informative to re-evaluate the data from these homology searches, with the aim of identifying the gene(s) conferring this Na+, quinidine, and veratridine sensitivity to the pharynx
    corecore