30 research outputs found

    Streptococcus pneumoniae Coinfection Is Correlated with the Severity of H1N1 Pandemic Influenza

    Get PDF
    Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease.We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0.0004). In subjects 6 to 55 years of age, the adjusted odds ratio (OR) of severe disease in the presence of S. pneumoniae was 125.5 (95% confidence interval [CI], 16.95, 928.72; p<0.0001).The association of S. pneumoniae with morbidity and mortality is established in the current and previous influenza pandemics. However, this study is the first to demonstrate the prognostic significance of non-invasive antemortem diagnosis of S. pneumoniae infection and may provide insights into clinical management

    Application of Broad-Spectrum, Sequence-Based Pathogen Identification in an Urban Population

    Get PDF
    A broad spectrum detection platform that provides sequence level resolution of target regions would have a significant impact in public health, case management, and means of expanding our understanding of the etiology of diseases. A previously developed respiratory pathogen microarray (RPM v.1) demonstrated the capability of this platform for this purpose. This newly developed RPM v.1 was used to analyze 424 well-characterized nasal wash specimens from patients presenting with febrile respiratory illness in the Washington, D. C. metropolitan region. For each specimen, the RPM v.1 results were compared against composite reference assay (viral and bacterial culture and, where appropriate, RT-PCR/PCR) results. Across this panel, the RPM assay showed ≥98% overall agreement for all the organisms detected compared with reference methods. Additionally, the RPM v.1 results provide sequence information which allowed phylogenetic classification of circulating influenza A viruses in ∼250 clinical specimens, and allowed monitoring the genetic variation as well as antigenic variability prediction. Multiple pathogens (2–4) were detected in 58 specimens (13.7%) with notably increased abundances of respiratory colonizers (esp. S. pneumoniae) during viral infection. This first-ever comparison of a broad-spectrum viral and bacterial identification technology of this type against a large battery of conventional “gold standard” assays confirms the utility of the approach for both medical surveillance and investigations of complex etiologies of illness caused by respiratory co-infections

    Recent Advances in the Diagnosis and Treatment of Influenza Pneumonia

    Get PDF
    A potentially fatal complication of influenza infection is the development of pneumonia, caused either directly by the influenza virus, or by secondary bacterial infection. Pneumonia related to the 2009 influenza A pandemic was found to be underestimated by commonly used pneumonia severity scores in many cases, and to be rapidly progressive, leading to respiratory failure. Confirmation of etiology by laboratory testing is warranted in such cases. Rapid antigen and immunofluorescence testing are useful screening tests, but have limited sensitivity. Confirmation of pandemic H1N1 influenza A infection can only be made by real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) or viral culture. The most effective preventive measure is annual influenza vaccination in selected individuals. Decisions to administer antiviral medications for influenza treatment or chemoprophylaxis should be based upon clinical and epidemiological factors, and should not be delayed by confirmatory laboratory testing results. Neuraminidase inhibitors (NI) are the agents of choice

    Public health and economic impact of vaccination with 7-valent pneumococcal vaccine (PCV7) in the context of the annual influenza epidemic and a severe influenza pandemic

    Get PDF
    Background: Influenza pandemic outbreaks occurred in the US in 1918, 1957, and 1968. Historical evidence suggests that the majority of influenza-related deaths during the 1918 US pandemic were attributable to bacterial pneumococcal infections. The 2009 novel influenza A (H1N1) outbreak highlights the importance of interventions that may mitigate the impact of a pandemic. Methods: A decision-analytic model was constructed to evaluate the impact of 7-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal disease incidence and mortality during a typical influenza season (13/100) and a severe influenza pandemic (30/100). Outcomes were compared for current PCV7 vaccination practices vs. no vaccination. The model was estimated using published sources and includes indirect (herd) protection of non-vaccinated persons. Results: The model predicts that PCV7 vaccination in the US is cost saving for a normal influenza season, reducing pneumococcal-related costs by 1.6billion.Inasevereinfluenzapandemic,vaccinationwouldsave1.6 billion. In a severe influenza pandemic, vaccination would save 7.3 billion in costs and prevent 512,000 cases of IPD, 719,000 cases of pneumonia, 62,000 IPD deaths, and 47,000 pneumonia deaths; 84% of deaths are prevented due to indirect (herd) protection in the unvaccinated. Conclusions: PCV7 vaccination is highly effective and cost saving in both normal and severe pandemic influenza seasons. Current infant vaccination practices may prevent >1 million pneumococcal-related deaths in a severe influenza pandemic, primarily due to herd protection
    corecore