13 research outputs found

    Insights into adherence to medication and lifestyle recommendations in an international cohort of patients with catecholaminergic polymorphic ventricular tachycardia

    Get PDF
    Aims In patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare inherited arrhythmia syndrome, arrhythmic events can be prevented by medication and lifestyle recommendations. In patients who experience breakthrough arrhythmic events, non-adherence plays an essential role. We aimed to investigate the incidence and potential reasons for non-adherence to medication and lifestyle recommendations in a large, international cohort of patients with CPVT. Methods and results An online multilingual survey was shared with CPVT patients worldwide by their cardiologists, through peer-recruitment, and on social media from November 2022 until July 2023. Self-reported non-adherence was measured using the validated Medication Adherence Rating Scale (MARS) and a newly developed questionnaire about lifestyle. Additionally, validated questionnaires were used to assess potential reasons for medication non-adherence. Two-hundred-and-eighteen patients completed the survey, of whom 200 (92%) were prescribed medication [122 (61%) female; median age 33.5 years (interquartile range: 22–50)]. One-hundred-and-three (52%) were prescribed beta-blocker and flecainide, 85 (43%) beta-blocker, and 11 (6%) flecainide. Thirty-four (17%) patients experienced a syncope, aborted cardiac arrest or appropriate implantable cardioverter defibrillator shock after diagnosis. Nineteen (13.4%) patients were exercising more than recommended. Thirty (15%) patients were non-adherent to medication. Female sex [odds ratio (OR) 3.7, 95% confidence interval (CI) 1.3–12.0, P = 0.019], flecainide monotherapy compared to combination therapy (OR 6.8, 95% CI 1.6–31.0, P = 0.010), and a higher agreement with statements regarding concerns about CPVT medication (OR 1.2, 95% CI 1.1–1.3, P < 0.001) were independently associated with non-adherence. Conclusion The significant rate of non-adherence associated with concerns regarding CPVT-related medication, emphasizes the potential for improving therapy adherence by targeted patient education

    Flecainide Is Associated With a Lower Incidence of Arrhythmic Events in a Large Cohort of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: In severely affected patients with catecholaminergic polymorphic ventricular tachycardia, beta-blockers are often insufficiently protective. The purpose of this study was to evaluate whether flecainide is associated with a lower incidence of arrhythmic events (AEs) when added to beta-blockers in a large cohort of patients with catecholaminergic polymorphic ventricular tachycardia. METHODS: From 2 international registries, this multicenter case cross-over study included patients with a clinical or genetic diagnosis of catecholaminergic polymorphic ventricular tachycardia in whom flecainide was added to beta-blocker therapy. The study period was defined as the period in which background therapy (ie, beta-blocker type [beta1-selective or nonselective]), left cardiac sympathetic denervation, and implantable cardioverter defibrillator treatment status, remained unchanged within individual patients and was divided into pre-flecainide and on-flecainide periods. The primary end point was AEs, defined as sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter defibrillator shock, and arrhythmic syncope. The association of flecainide with AE rates was assessed using a generalized linear mixed model assuming negative binomial distribution and random effects for patients. RESULTS: A total of 247 patients (123 [50%] females; median age at start of flecainide, 18 years [interquartile range, 14-29]; median flecainide dose, 2.2 mg/kg per day [interquartile range, 1.7-3.1]) were included. At baseline, all patients used a beta-blocker, 70 (28%) had an implantable cardioverter defibrillator, and 21 (9%) had a left cardiac sympathetic denervation. During a median pre-flecainide follow-up of 2.1 years (interquartile range, 0.4-7.2), 41 patients (17%) experienced 58 AEs (annual event rate, 5.6%). During a median on-flecainide follow-up of 2.9 years (interquartile range, 1.0-6.0), 23 patients (9%) experienced 38 AEs (annual event rate, 4.0%). There were significantly fewer AEs after initiation of flecainide (incidence rate ratio, 0.55 [95% CI, 0.38-0.83]; P=0.007). Among patients who were symptomatic before diagnosis or during the pre-flecainide period (n=167), flecainide was associated with significantly fewer AEs (incidence rate ratio, 0.49 [95% CI, 0.31-0.77]; P=0.002). Among patients with ≥1 AE on beta-blocker therapy (n=41), adding flecainide was also associated with significantly fewer AEs (incidence rate ratio, 0.25 [95% CI, 0.14-0.45]; P&lt;0.001). CONCLUSIONS: For patients with catecholaminergic polymorphic ventricular tachycardia, adding flecainide to beta-blocker therapy was associated with a lower incidence of AEs in the overall cohort, in symptomatic patients, and particularly in patients with breakthrough AEs while on beta-blocker therapy.</p

    Flecainide Is Associated With a Lower Incidence of Arrhythmic Events in a Large Cohort of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: In severely affected patients with catecholaminergic polymorphic ventricular tachycardia, beta-blockers are often insufficiently protective. The purpose of this study was to evaluate whether flecainide is associated with a lower incidence of arrhythmic events (AEs) when added to beta-blockers in a large cohort of patients with catecholaminergic polymorphic ventricular tachycardia. METHODS: From 2 international registries, this multicenter case cross-over study included patients with a clinical or genetic diagnosis of catecholaminergic polymorphic ventricular tachycardia in whom flecainide was added to beta-blocker therapy. The study period was defined as the period in which background therapy (ie, beta-blocker type [beta1-selective or nonselective]), left cardiac sympathetic denervation, and implantable cardioverter defibrillator treatment status, remained unchanged within individual patients and was divided into pre-flecainide and on-flecainide periods. The primary end point was AEs, defined as sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter defibrillator shock, and arrhythmic syncope. The association of flecainide with AE rates was assessed using a generalized linear mixed model assuming negative binomial distribution and random effects for patients. RESULTS: A total of 247 patients (123 [50%] females; median age at start of flecainide, 18 years [interquartile range, 14-29]; median flecainide dose, 2.2 mg/kg per day [interquartile range, 1.7-3.1]) were included. At baseline, all patients used a beta-blocker, 70 (28%) had an implantable cardioverter defibrillator, and 21 (9%) had a left cardiac sympathetic denervation. During a median pre-flecainide follow-up of 2.1 years (interquartile range, 0.4-7.2), 41 patients (17%) experienced 58 AEs (annual event rate, 5.6%). During a median on-flecainide follow-up of 2.9 years (interquartile range, 1.0-6.0), 23 patients (9%) experienced 38 AEs (annual event rate, 4.0%). There were significantly fewer AEs after initiation of flecainide (incidence rate ratio, 0.55 [95% CI, 0.38-0.83]; P=0.007). Among patients who were symptomatic before diagnosis or during the pre-flecainide period (n=167), flecainide was associated with significantly fewer AEs (incidence rate ratio, 0.49 [95% CI, 0.31-0.77]; P=0.002). Among patients with ≥1 AE on beta-blocker therapy (n=41), adding flecainide was also associated with significantly fewer AEs (incidence rate ratio, 0.25 [95% CI, 0.14-0.45]; P&lt;0.001). CONCLUSIONS: For patients with catecholaminergic polymorphic ventricular tachycardia, adding flecainide to beta-blocker therapy was associated with a lower incidence of AEs in the overall cohort, in symptomatic patients, and particularly in patients with breakthrough AEs while on beta-blocker therapy.</p

    An International Multicenter Cohort Study on beta-Blockers for the Treatment of Symptomatic Children With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    Background: Symptomatic children with catecholaminergic polymorphic ventricular tachycardia (CPVT) are at risk for recurrent arrhythmic events. β-Blockers decrease this risk, but studies comparing individual β-blockers in sizeable cohorts are lacking. We aimed to assess the association between risk for arrhythmic events and type of β-blocker in a large cohort of symptomatic children with CPVT.Methods: From 2 international registries of patients with CPVT, RYR2 variant–carrying symptomatic children (defined as syncope or sudden cardiac arrest before β-blocker initiation and age at start of β-blocker therapy &lt;18 years), treated with a β-blocker were included. Cox regression analyses with time-dependent covariates for β-blockers and potential confounders were used to assess the hazard ratio (HR). The primary outcome was the first occurrence of sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter-defibrillator shock, or syncope. The secondary outcome was the first occurrence of any of the primary outcomes except syncope.Results: We included 329 patients (median age at diagnosis, 12 [interquartile range, 7–15] years, 35% females). Ninety-nine (30.1%) patients experienced the primary outcome and 74 (22.5%) experienced the secondary outcome during a median follow-up of 6.7 (interquartile range, 2.8–12.5) years. Two-hundred sixteen patients (66.0%) used a nonselective β-blocker (predominantly nadolol [n=140] or propranolol [n=70]) and 111 (33.7%) used a β1-selective β-blocker (predominantly atenolol [n=51], metoprolol [n=33], or bisoprolol [n=19]) as initial β-blocker. Baseline characteristics did not differ. The HRs for both the primary and secondary outcomes were higher for β1-selective compared with nonselective β-blockers (HR, 2.04 [95% CI, 1.31–3.17]; and HR, 1.99 [95% CI, 1.20–3.30], respectively). When assessed separately, the HR for the primary outcome was higher for atenolol (HR, 2.68 [95% CI, 1.44–4.99]), bisoprolol (HR, 3.24 [95% CI, 1.47–7.18]), and metoprolol (HR, 2.18 [95% CI, 1.08–4.40]) compared with nadolol, but did not differ from propranolol. The HR of the secondary outcome was only higher in atenolol compared with nadolol (HR, 2.68 [95% CI, 1.30–5.55]).Conclusions: β1-selective β-blockers were associated with a significantly higher risk for arrhythmic events in symptomatic children with CPVT compared with nonselective β-blockers, specifically nadolol. Nadolol, or propranolol if nadolol is unavailable, should be the preferred β-blocker for treating symptomatic children with CPVT.</p

    Diagnostic accuracy of the response to the brief tachycardia provoked by standing in children suspected for long QT syndrome

    No full text
    Background: Adult long QT syndrome (LQTS) patients have inadequate corrected QT interval (QTc) shortening and an abnormal T-wave response to the sudden heart rate acceleration provoked by standing. In adults, this knowledge can be used to aid an LQTS diagnosis and, possibly, for risk stratification. However, data on the diagnostic value of the standing test in children are currently limited. Objective: To determine the potential value of the standing test to aid LQTS diagnostics in children. Methods: In a prospective cohort including children (≤18 years) who had a standing test, comprehensive analyses were performed including manual and automated QT interval assessments and determination of T-wave morphology changes. Results: We included 47 LQTS children and 86 control children. At baseline, the QTc that identified LQTS children with a 90% sensitivity was 435 ms, which yielded a 65% specificity. A QTc ≥ 490 ms after standing only slightly increased sensitivity (91%, 95% confidence interval [CI]: 80%–98%) and slightly decreased specificity (58%, 95% CI: 47%–70%). Sensitivity increased slightly more when T-wave abnormalities were present (94%, 95% CI: 82%–99%; specificity 53%, 95% CI: 42%–65%). When a baseline QTc ≥ 440 ms was accompanied by a QTc ≥ 490 ms and T-wave abnormalities after standing, sensitivity further increased (96%, 95% CI: 85%–99%) at the expense of a further specificity decrease (41%, 95% CI: 30%–52%). Beat-to-beat analysis showed that 30 seconds after standing, LQTS children had a greater increase in heart rate compared to controls, which was more evidently present in LQTS boys and LQTS type 1 children. Conclusion: In children, the standing test has limited additive diagnostic value for LQTS over a baseline electrocardiogram, while T-wave abnormalities after standing also have limited additional value. The standing test for LQTS should only be used with caution in children

    Repeatability of ventricular arrhythmia characteristics on the exercise-stress test in RYR2-mediated catecholaminergic polymorphic ventricular tachycardia

    No full text
    AIMS: In catecholaminergic polymorphic ventricular tachycardia (CPVT), the exercise-stress test (EST) is the cornerstone for the diagnosis, risk stratification, and assessment of therapeutic efficacy, but its repeatability is unknown. We aimed to test the repeatability of ventricular arrhythmia characteristics on the EST in patients with CPVT. METHODS AND RESULTS: EST-pairs (ESTs performed within 18 months between 2005 and 2021, on the same protocol, and without or on the exact same treatment) of patients with RYR2-mediated CPVT from two specialized centres were included. The primary endpoint was the repeatability of the maximum ventricular arrhythmia score [VAS: 0 for the absence of premature ventricular contractions (PVCs); 1 for isolated PVCs; 2 for bigeminal PVCs; 3 for couplets; and 4 for non-sustained ventricular tachycardia]. Secondary outcomes were the repeatability of the heart rate at the first PVC and the ΔVAS (the absolute difference in VAS between the EST-pairs). A total of 104 patients with 349 EST-pairs were included. The median duration between ESTs was 343 (interquartile range, 189-378) days. Sixty (17.2%) EST-pairs were off therapy. The repeatability of the VAS was moderate {Krippendorf α, 0.56 [95% confidence interval (CI), 0.48-0.64]}, and the repeatability of the heart rate at the first PVC was substantial [intra-class correlation coefficient, 0.78 (95% CI, 0.71-0.84)]. The use of medication was associated with a higher odds for a ΔVAS > 1 (odds ratio = 3.52; 95% CI, 2.46-4.57; P = 0.020). CONCLUSION: The repeatability of ventricular arrhythmia characteristics was moderate to substantial. This underlines the need for multiple ESTs in CPVT patients and CPVT suspicious patients and it provides the framework for assessing the therapeutic efficacy of novel CPVT therapies

    Diagnostic accuracy of the response to the brief tachycardia provoked by standing in children suspected for long QT syndrome

    No full text
    Background: Adult long QT syndrome (LQTS) patients have inadequate corrected QT interval (QTc) shortening and an abnormal T-wave response to the sudden heart rate acceleration provoked by standing. In adults, this knowledge can be used to aid an LQTS diagnosis and, possibly, for risk stratification. However, data on the diagnostic value of the standing test in children are currently limited. Objective: To determine the potential value of the standing test to aid LQTS diagnostics in children. Methods: In a prospective cohort including children (≤18 years) who had a standing test, comprehensive analyses were performed including manual and automated QT interval assessments and determination of T-wave morphology changes. Results: We included 47 LQTS children and 86 control children. At baseline, the QTc that identified LQTS children with a 90% sensitivity was 435 ms, which yielded a 65% specificity. A QTc ≥ 490 ms after standing only slightly increased sensitivity (91%, 95% confidence interval [CI]: 80%–98%) and slightly decreased specificity (58%, 95% CI: 47%–70%). Sensitivity increased slightly more when T-wave abnormalities were present (94%, 95% CI: 82%–99%; specificity 53%, 95% CI: 42%–65%). When a baseline QTc ≥ 440 ms was accompanied by a QTc ≥ 490 ms and T-wave abnormalities after standing, sensitivity further increased (96%, 95% CI: 85%–99%) at the expense of a further specificity decrease (41%, 95% CI: 30%–52%). Beat-to-beat analysis showed that 30 seconds after standing, LQTS children had a greater increase in heart rate compared to controls, which was more evidently present in LQTS boys and LQTS type 1 children. Conclusion: In children, the standing test has limited additive diagnostic value for LQTS over a baseline electrocardiogram, while T-wave abnormalities after standing also have limited additional value. The standing test for LQTS should only be used with caution in children

    Diagnostic accuracy of the response to the brief tachycardia provoked by standing in children suspected for long QT syndrome

    No full text
    BACKGROUND: Adult long QT syndrome (LQTS) patients have inadequate corrected QT interval (QTc) shortening and an abnormal T-wave response to the sudden heart rate acceleration provoked by standing. In adults, this knowledge can be used to aid an LQTS diagnosis and, possibly, for risk stratification. However, data on the diagnostic value of the standing test in children are currently limited. OBJECTIVE: To determine the potential value of the standing test to aid LQTS diagnostics in children. METHODS: In a prospective cohort including children (≤18 years) who had a standing test, comprehensive analyses were performed including manual and automated QT interval assessments and determination of T-wave morphology changes. RESULTS: We included 47 LQTS children and 86 control children. At baseline, the QTc that identified LQTS children with a 90% sensitivity was 435 ms, which yielded a 65% specificity. A QTc ≥ 490 ms after standing only slightly increased sensitivity (91%, 95% confidence interval [CI]: 80%–98%) and slightly decreased specificity (58%, 95% CI: 47%–70%). Sensitivity increased slightly more when T-wave abnormalities were present (94%, 95% CI: 82%–99%; specificity 53%, 95% CI: 42%–65%). When a baseline QTc ≥ 440 ms was accompanied by a QTc ≥ 490 ms and T-wave abnormalities after standing, sensitivity further increased (96%, 95% CI: 85%–99%) at the expense of a further specificity decrease (41%, 95% CI: 30%–52%). Beat-to-beat analysis showed that 30 seconds after standing, LQTS children had a greater increase in heart rate compared to controls, which was more evidently present in LQTS boys and LQTS type 1 children. CONCLUSION: In children, the standing test has limited additive diagnostic value for LQTS over a baseline electrocardiogram, while T-wave abnormalities after standing also have limited additional value. The standing test for LQTS should only be used with caution in children
    corecore