330 research outputs found

    Collective Motion of Polarized Dipolar Fermi Gases in the Hydrodynamic Regime

    Get PDF
    Recently, a seminal STIRAP experiment allowed the creation of 40K-87Rb molecules in the rovibrational ground state [K.-K. Ni et al., Science 322, 231 (2008)]. In order to describe such a polarized dipolar Fermi gas in the hydrodynamic regime, we work out a variational time-dependent Hartree-Fock approach. With this we calculate dynamical properties of such a system as, for instance, the frequencies of the low-lying excitations and the time-of-flight expansion. We find that the dipole-dipole interaction induces anisotropic breathing oscillations in momentum space. In addition, after release from the trap, the momentum distribution becomes asymptotically isotropic, while the particle density becomes anisotropic

    Quantum Fluctuations in Dipolar Bose Gases

    Full text link
    We investigate the influence of quantum fluctuations upon dipolar Bose gases by means of the Bogoliubov-de Gennes theory. Thereby, we make use of the local density approximation to evaluate the dipolar exchange interaction between the condensate and the excited particles. This allows to obtain the Bogoliubov spectrum analytically in the limit of large particle numbers. After discussing the condensate depletion and the ground-state energy correction, we derive quantum corrected equations of motion for harmonically trapped dipolar Bose gases by using superfluid hydrodynamics. These equations are subsequently applied to analyze the equilibrium configuration, the low-lying oscillation frequencies, and the time-of-flight dynamics. We find that both atomic magnetic and molecular electric dipolar systems offer promising scenarios for detecting beyond mean-field effects.Comment: Published in PR

    Thermodynamical Properties of a Rotating Ideal Bose Gas

    Full text link
    In a recent experiment, a Bose-Einstein condensate was trapped in an anharmonic potential which is well approximated by a harmonic and a quartic part. The condensate was set into such a fast rotation that the centrifugal force in the corotating frame overcompensates the harmonic part in the plane perpendicular to the rotation axis. Thus, the resulting trap potential became Mexican-hat shaped. We present an analysis for an ideal Bose gas which is confined in such an anharmonic rotating trap within a semiclassical approximation where we calculate the critical temperature, the condensate fraction, and the heat capacity. In particular, we examine in detail how these thermodynamical quantities depend on the rotation frequency.Comment: Author Information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_dir

    Rotating Fermi gases in an anharmonic trap

    Full text link
    Motivated by recent experiments on rotating Bose-Einstein condensates, we investigate a rotating, polarized Fermi gas trapped in an anharmonic potential. We apply a semiclassical expansion of the density of states in order to determine how the thermodynamic properties depend on the rotation frequency. The accuracy of the semiclassical approximation is tested and shown to be sufficient for describing typical experiments. At zero temperature, rotating the gas above a given frequency ΩDO\Omega_{\rm DO} leads to a `donut'-shaped cloud which is analogous to the hole found in two-dimensional Bose-Einstein condensates. The free expansion of the gas after suddenly turning off the trap is considered and characterized by the time and rotation frequency dependence of the aspect ratio. Temperature effects are also taken into account and both low- and high-temperature expansions are presented for the relevant thermodynamical quantities. In the high-temperature regime a virial theorem approach is used to study the delicate interplay between rotation and anharmonicity

    Phase transitions and molecular dynamics of n-hexadecanol confined in silicon nanochannels

    Full text link
    We present a combined x-ray diffraction and infrared spectroscopy study on the phase behavior and molecular dynamics of n-hexadecanol in its bulk state and confined in an array of aligned nanochannels of 8 nm diameter in mesoporous silicon. Under confinement the transition temperatures between the liquid, the rotator RII and the crystalline C phase are lowered by approximately 20K. While bulk n-hexadecanol exhibits at low temperatures a polycrystalline mixture of orthorhombic beta- and monoclinic gamma-forms, geometrical confinement favors the more simple beta-form: only crystallites are formed, where the chain axis are parallel to the layer normal. However, the gamma-form, in which the chain axis are tilted with respect to the layer normal, is entirely suppressed. The beta-crystallites form bi-layers, that are not randomly orientated in the pores. The molecules are arranged with their long axis perpendicular to the long channel axis. With regard to the molecular dynamics, we were able to show that confinement does not affect the inner-molecular dynamics of the CH_2 scissor vibration and to evaluate the inter-molecular force constants in the C phase.Comment: 14 pages, 14 figure

    Fast Converging Path Integrals for Time-Dependent Potentials I: Recursive Calculation of Short-Time Expansion of the Propagator

    Get PDF
    In this and subsequent paper arXiv:1011.5185 we develop a recursive approach for calculating the short-time expansion of the propagator for a general quantum system in a time-dependent potential to orders that have not yet been accessible before. To this end the propagator is expressed in terms of a discretized effective potential, for which we derive and analytically solve a set of efficient recursion relations. Such a discretized effective potential can be used to substantially speed up numerical Monte Carlo simulations for path integrals, or to set up various analytic approximation techniques to study properties of quantum systems in time-dependent potentials. The analytically derived results are numerically verified by treating several simple models.Comment: 29 pages, 5 figure

    Disorder-Induced Shift of Condensation Temperature for Dilute Trapped Bose Gases

    Full text link
    We determine the leading shift of the Bose-Einstein condensation temperature for an ultracold dilute atomic gas in a harmonic trap due to weak disorder by treating both a Gaussian and a Lorentzian spatial correlation for the quenched disorder potential. Increasing the correlation length from values much smaller than the geometric mean of the trap scale and the mean particle distance to much larger values leads first to an increase of the positive shift to a maximum at this critical length scale and then to a decrease.Comment: Author information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_di

    Beyond Mean-Field Low-Lying Excitations of Dipolar Bose Gases

    Get PDF
    We theoretically investigate various beyond mean-field effects on Bose gases at zero temperature featuring the anisotropic and long-range dipole-dipole interaction in addition to the isotropic and short-range contact interaction. Within the realm of the Bogoliubov-de Gennes theory, we consider static properties and low-lying excitations of both homogeneous and harmonically trapped dipolar bosonic gases. For the homogeneous system, the condensate depletion, the ground-state energy, the equation of state, and the speed of sound are discussed in detail. Making use of the local density approximation, we extend these results in order to study the properties of a dipolar Bose gas in a harmonic trap and in the regime of large particle numbers. After deriving the equations of motion for the general case of a triaxial trap, we analyze the influence of quantum fluctuations on important properties of the gas, such as the equilibrium configuration and the low-lying excitations in the case of a cylinder-symmetric trap. In addition to the monopole and quadrupole oscillation modes, we also discuss the radial quadrupole mode. We find that the latter acquires a quantum correction exclusively due to the dipole-dipole interaction. As a result, we identify the radial quadrupole as a reasonably accessible source for the signature of dipolar many-body effects and stress the enhancing character that dipolar interactions have for quantum fluctuations in the other oscillation modes.Comment: Version published in PR
    • …
    corecore