2 research outputs found

    Cross-calibration of Time-of-flight and Colour Cameras

    Get PDF
    Time-of-flight cameras provide depth information, which is complementary to the photometric appearance of the scene in ordinary images. It is desirable to merge the depth and colour information, in order to obtain a coherent scene representation. However, the individual cameras will have different viewpoints, resolutions and fields of view, which means that they must be mutually calibrated. This paper presents a geometric framework for this multi-view and multi-modal calibration problem. It is shown that three-dimensional projective transformations can be used to align depth and parallax-based representations of the scene, with or without Euclidean reconstruction. A new evaluation procedure is also developed; this allows the reprojection error to be decomposed into calibration and sensor-dependent components. The complete approach is demonstrated on a network of three time-of-flight and six colour cameras. The applications of such a system, to a range of automatic scene-interpretation problems, are discussed.Comment: 18 pages, 12 figures, 3 table

    A Distributed Architecture for Interacting with NAO

    Get PDF
    International audienceOne of the main applications of the humanoid robot NAO – a small robot companion – is human-robot interaction (HRI). NAO is particularly well suited for HRI applications because of its design, hardware specifications, programming capabilities, and affordable cost. Indeed, NAO can stand up, walk, wander, dance, play soccer, sit down, recognize and grasp simple objects, detect and identify people, localize sounds, understand some spoken words, engage itself in simple and goal-directed dialogs, and synthesize speech. This is made possible due to the robot's 24 degree-of-freedom articulated structure (body, legs, feet, arms, hands, head, etc.), motors, cameras, microphones, etc., as well as to its on-board computing hardware and embedded software, e.g., robot motion control. Nevertheless, the current NAO configuration has two drawbacks that restrict the complexity of interactive behaviors that could potentially be implemented. Firstly, the on-board computing resources are inherently limited, which implies that it is difficult to implement sophisticated computer vision and audio signal analysis algorithms required by advanced interactive tasks. Secondly, programming new robot functionalities currently implies the development of embedded software, which is a difficult task in its own right necessitating specialized knowledge. The vast majority of HRI practitioners may not have this kind of expertise and hence they cannot easily and quickly implement their ideas, carry out thorough experimental validations, and design proof-of-concept demonstrators. We have developed a distributed software architecture that attempts to overcome these two limitations. Broadly speaking, NAO's on-board computing resources are augmented with external computing resources. The latter is a computer platform with its CPUs, GPUs, memory, operating system, libraries, software packages, internet access, etc. This configuration enables easy and fast development in Matlab, C, C++, or Python
    corecore