282 research outputs found

    Tributyltin(Iv) butyrate: A novel epigenetic modifier with er stress-and apoptosis-inducing properties in colon cancer cells

    Get PDF
    Organotin(IV) compounds are a class of non-platinum metallo-conjugates exhibiting antitumor activity. The effects of different organotin types has been related to several mechanisms, including their ability to modify acetylation protein status and to promote apoptosis. Here, we focus on triorganotin(IV) complexes of butyric acid, a well-known HDAC inhibitor with antitumor properties. The conjugated compounds were synthesized and characterised by FTIR spectroscopy, multi-nuclear (1H,13C and119Sn) NMR, and mass spectrometry (ESI-MS). In the triorganotin(IV) complexes, an anionic monodentate butyrate ligand was observed, which coordinated the tin atom on a tetra-coordinated, monomeric environment similar to ester. FTIR and NMR findings confirm this structure both in solid state and solution. The antitumor efficacy of the triorganotin(IV) butyrates was tested in colon cancer cells and, among them, tributyltin(IV) butyrate (BT2) was selected as the most efficacious. BT2 induced G2/M cell cycle arrest, ER stress, and apoptotic cell death. These effects were obtained using low concentrations of BT2 up to 1 µM, whereas butyric acid alone was completely inefficacious, and the parent compound TBT was poorly effective at the same treatment conditions. To assess whether butyrate in the coordinated form maintains its epigenetic effects, histone acetylation was evaluated and a dramatic decrease in acetyl-H3 and-H4 histones was found. In contrast, butyrate alone stimulated histone acetylation at a higher concentration (5 mM). BT2 was also capable of preventing histone acetylation induced by SAHA, another potent HDAC inhibitor, thus suggesting that it may activate HDACs. These results support a potential use of BT2, a novel epigenetic modulator, in colon cancer treatment

    New Insight on Medieval Painting in Sicily: The Virgin Hodegetria Panel in Monreale Cathedral (Palermo, Italy)

    Get PDF
    : The Virgin Hodegetria, located in the Cathedral of Santa Maria Nuova in Monreale, near Palermo (Italy), probably dating the first half of the 13th century, is one of the earliest examples of medieval panel painting in Sicily. A diagnostic campaign was carried out on the panel aiming to identify the constituting materials and the executive technique, as well as to assess the state of conservation for supporting the methodological choice of the restoration intervention. Both non invasive (X-ray radiography, digital microscope, multispectral imaging, ED-X-ray fluorescence) and micro-invasive (polarised light microscopy, ESEM-EDX, ATR-FTIR spectroscopy and micro-Raman spectroscopy) analyses were performed. According to the results, the executive technique followed the 13th–14th-century Italian painting tradition. A complex structure was applied on the wooden support, consisting of a double layer of canvas and several ground layers of gypsum and glue based binder. The underdrawing was made by a brush using carbonaceous black pigment. The original palette includes red ochre, red lead, azurite, carbon black and bone black. During the several restorations, mercury-based red, indigo, smalt blue, orpiment and synthetic mars were used. The original silver leaf of the frame was covered with red tin-based lake and subsequently regilded with gold leaf. Proteinaceous and oil binders were also detecte

    Multisystem imaging manifestations of covid-19, part 1: Viral pathogenesis and pulmonary and vascular system complications

    Get PDF
    © RSNA, 2020. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in coronavirus disease 2019 (COVID-19), which was declared an official pandemic by the World Health Organization on March 11, 2020. The infection has been reported in most countries around the world. As of August 2020, there have been over 21 million cases of COVID-19 reported worldwide, with over 800 000 COVID-19–associated deaths. It has become appar-ent that although COVID-19 predominantly affects the respiratory system, many other organ systems can also be involved. Imaging plays an essential role in the diagnosis of all manifestations of the disease, as well as its related complications, and proper utilization and interpretation of imaging examinations is crucial. With the growing global COVID-19 outbreak, a comprehensive understanding of the diagnostic imaging hallmarks, imaging features, multi-systemic involvement, and evolution of imaging findings is essential for effective patient management and treatment. To date, only a few articles have been published that comprehensively describe the multisystemic imaging manifestations of COVID-19. The authors provide an inclusive system-by-system image-based review of this life-threatening and rapidly spreading infection. In part 1 of this article, the authors discuss general aspects of the disease, with an emphasis on virology, the pathophysiology of the virus, and clinical presentation of the disease. The key imaging features of the varied pathologic manifestations of this infection that involve the pulmonary and peripheral and central vascular systems are also described. Part 2 will focus on key imaging features of COVID-19 that involve the cardiac, neurologic, abdominal, dermatologic and ocular, and musculoskeletal systems, as well as pediatric and pregnancy-related manifestations of the virus. Vascular complications pertinent to each system will be also be discussed in part 2

    Multisystem Imaging Manifestations of COVID-19, Part 2: From Cardiac Complications to Pediatric Manifestations.

    Get PDF
    Infection with severe acute respiratory syndrome coronavirus 2 results in coronavirus disease 2019 (COVID-19), which was declared an official pandemic by the World Health Organization on March 11, 2020. COVID-19 has been reported in most countries, and as of August 15, 2020, there have been over 21 million cases of COVID-19 reported worldwide, with over 800 000 COVID-19-associated deaths. Although COVID-19 predominantly affects the respiratory system, it has become apparent that many other organ systems can also be involved. Imaging plays an essential role in the diagnosis of all manifestations of the disease and its related complications, and proper utilization and interpretation of imaging examinations is crucial. A comprehensive understanding of the diagnostic imaging hallmarks, imaging features, multisystem involvement, and evolution of imaging findings is essential for effective patient management and treatment. In part 1 of this article, the authors described the viral pathogenesis, diagnostic imaging hallmarks, and manifestations of the pulmonary and peripheral and central vascular systems of COVID-19. In part 2 of this article, the authors focus on the key imaging features of the varied pathologic manifestations of COVID-19, involving the cardiac, neurologic, abdominal, dermatologic and ocular, and musculoskeletal systems, as well as the pediatric and pregnancy-related manifestations of the virus. Online supplemental material is available for this article. ©RSNA, 2020

    Circulating Levels of Ferritin, RDW, PTLs as Predictive Biomarkers of Postoperative Atrial Fibrillation Risk after Cardiac Surgery in Extracorporeal Circulation

    Get PDF
    Postoperative atrial fibrillation (POAF) is the most common arrhythmia after cardiac surgery in conventional extracorporeal circulation (CECC), with an incidence of 15-50%. The POAF pathophysiology is not known, and no blood biomarkers exist. However, an association between increased ferritin levels and increased AF risk, has been demonstrated. Based on such evidence, here, we evaluated the effectiveness of ferritin and other haematological parameters as POAF risk biomarkers in patients subjected to cardiac surgery. We enrolled 105 patients (mean age = 70.1 +/- 7.1 years; 70 men and 35 females) with diverse heart pathologies and who were subjected to cardiothoracic surgery. Their blood samples were collected and used to determine hematological parameters. Electrocardiographic and echocardiographic parameters were also evaluated. The data obtained demonstrated significantly higher levels of serum ferritin, red cell distribution width (RDW), and platelets (PLTs) in POAF patients. However, the serum ferritin resulted to be the independent factor associated with the onset POAF risk. Thus, we detected the ferritin cut-off value, which, when >= 148.5 ng/mL, identifies the subjects at the highest POAF risk, and with abnormal ECG atrial parameters, such as PW indices, and altered structural heart disease variables. Serum ferritin, RDW, and PTLs represent predictive biomarkers of POAF after cardiothoracic surgery in CECC; particularly, serum ferritin combined with anormal PW indices and structural heart disease variables can represent an optimal tool for predicting not only POAF, but also the eventual stroke onset

    Iodido{4-phenyl-1-[1-(1,3-thia­zol-2-yl-κN)ethyl­idene]thio­semicarbazidato-κ2 N′,S}{4-phenyl-1-[1-(1,3-thia­zol-2-yl)ethyl­idene]thio­semicarbazide-κS}mercury(II)

    Get PDF
    In the title compound, [Hg(C12H11N4S2)I(C12H12N4S2)], the Hg atom is in a distorted square-pyramidal coordination, defined by the iodide ligand, by the S atom of the neutral ligand in the apical position, and by the N atom of the thia­zole ring, the thio­ureido N and the S atom of the deprotonated ligand. The deprotonated ligand intra­molecularly hydrogen bonds to the thia­zole ring N atom, while the deprotonated ligand forms an inter­molecular hydrogen bond to the thiol­ate S atom. The deprotonation of the tridentate ligand and its coordination to Hg via the S atom strikingly affects the C—S bond lengths. In the free ligand, the C—S bond distance is 1.685 (7) Å, whereas it is 1.749 (7) Å in the deprotonated ligand. Similarly, the Hg—S bond distance is slightly longer to the neutral ligand [2.6682 (18) Å] than to the deprotonated ligand [2.5202 (19) Å]. The Hg—I distance is 2.7505 (8) Å
    corecore