29 research outputs found

    Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases

    Get PDF
    Interhemispheric interaction has a major role in various neurobehavioral functions. Its disruption is a major contributor to the pathological changes in the setting of brain injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as neurodegenerative diseases. Because interhemispheric interaction has a crucial role in functional consequence in these neuropathological states, a review of noninvasive and state-of-the-art molecular based neuromodulation methods that focus on or have the potential to elucidate interhemispheric interaction have been performed. This yielded approximately 170 relevant articles on human subjects or animal models. There has been a recent surge of reports on noninvasive methods such as transcranial magnetic stimulation and transcranial direct current stimulation. Since these are noninvasive techniques with little to no side effects, their widespread use in clinical studies can be easily justified. The overview of novel neuromodulation methods and how they can be applied to study the role of interhemispheric communication in neural injury and neurodegenerative disease is provided. Additionally, the potential of each method in therapeutic use as well as investigating the pathophysiology of interhemispheric interaction in neurodegenerative diseases and brain injury is discussed. New technologies such as transcranial magnetic stimulation or transcranial direct current stimulation could have a great impact in understanding interhemispheric pathophysiology associated with acquired injury and neurodegenerative diseases, as well as designing improved rehabilitation therapies. Also, advances in molecular based neuromodulation techniques such as optogenetics and other chemical, thermal, and magnetic based methods provide new capabilities to stimulate or inhibit a specific brain location and a specific neuronal population

    Multimodal Evaluation of TMS - Induced Somatosensory Plasticity and Behavioral Recovery in Rats With Contusion Spinal Cord Injury

    Get PDF
    Introduction: Spinal cord injury (SCI) causes partial or complete damage to sensory and motor pathways and induces immediate changes in cortical function. Current rehabilitative strategies do not address this early alteration, therefore impacting the degree of neuroplasticity and subsequent recovery. The following study aims to test if a non-invasive brain stimulation technique such as repetitive transcranial magnetic stimulation (rTMS) is effective in promoting plasticity and rehabilitation, and can be used as an early intervention strategy in a rat model of SCI.Methods: A contusion SCI was induced at segment T9 in adult rats. An rTMS coil was positioned over the brain to deliver high frequency stimulation. Behavior, motor and sensory functions were tested in three groups: SCI rats that received high-frequency (20 Hz) rTMS within 10 min post-injury (acute-TMS; n = 7); SCI rats that received TMS starting 2 weeks post-injury (chronic-TMS; n = 5), and SCI rats that received sham TMS (no-TMS, n = 5). Locomotion was evaluated by the Basso, Beattie, and Bresnahan (BBB) and gridwalk tests. Motor evoked potentials (MEP) were recorded from the forepaw across all groups to measure integrity of motor pathways. Functional MRI (fMRI) responses to contralateral tactile hindlimb stimulation were measured in an 11.7T horizontal bore small-animal scanner.Results: The acute-TMS group demonstrated the fastest improvements in locomotor performance in both the BBB and gridwalk tests compared to chronic and no-TMS groups. MEP responses from forepaw showed significantly greater difference in the inter-peak latency between acute-TMS and no-TMS groups, suggesting increases in motor function. Finally, the acute-TMS group showed increased fMRI-evoked responses to hindlimb stimulation over the right and left hindlimb (LHL) primary somatosensory representations (S1), respectively; the chronic-TMS group showed moderate sensory responses in comparison, and the no-TMS group exhibited the lowest sensory responses to both hindlimbs.Conclusion: The results suggest that rTMS therapy beginning in the acute phase after SCI promotes neuroplasticity and is an effective rehabilitative approach in a rat model of SCI

    New approaches for the neuroimaging of gene expression

    No full text

    Immediate Effects of Repetitive Magnetic Stimulation on Single Cortical Pyramidal Neurons.

    No full text
    Repetitive Transcranial Magnetic Stimulation (rTMS) has been successfully used as a non-invasive therapeutic intervention for several neurological disorders in the clinic as well as an investigative tool for basic neuroscience. rTMS has been shown to induce long-term changes in neuronal circuits in vivo. Such long-term effects of rTMS have been investigated using behavioral, imaging, electrophysiological, and molecular approaches, but there is limited understanding of the immediate effects of TMS on neurons. We investigated the immediate effects of high frequency (20 Hz) rTMS on the activity of cortical neurons in an effort to understand the underlying cellular mechanisms activated by rTMS. We used whole-cell patch-clamp recordings in acute rat brain slices and calcium imaging of cultured primary neurons to examine changes in neuronal activity and intracellular calcium respectively. Our results indicate that each TMS pulse caused an immediate and transient activation of voltage gated sodium channels (9.6 ± 1.8 nA at -45 mV, p value < 0.01) in neurons. Short 500 ms 20 Hz rTMS stimulation induced action potentials in a subpopulation of neurons, and significantly increased the steady state current of the neurons at near threshold voltages (at -45 mV: before TMS: I = 130 ± 17 pA, during TMS: I = 215 ± 23 pA, p value = 0.001). rTMS stimulation also led to a delayed increase in intracellular calcium (153.88 ± 61.94% increase from baseline). These results show that rTMS has an immediate and cumulative effect on neuronal activity and intracellular calcium levels, and suggest that rTMS may enhance neuronal responses when combined with an additional motor, sensory or cognitive stimulus. Thus, these results could be translated to optimize rTMS protocols for clinical as well as basic science applications

    Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve deafferentation

    No full text
    Evidence is emerging for significant inter-hemispheric cortical plasticity in humans, opening important questions about the significance and mechanism for this long range plasticity. In this work, peripheral nerve deafferentation was performed on both the rat forepaw and hindpaw and cortical reorganization was assessed using functional MRI (fMRI). Sensory stimulation of the forepaw or the hindpaw in rats that experienced only partial denervation resulted in activation in only the appropriate, contralateral, primary somatosensory cortex (SI). However, 2-3\ua0weeks following complete denervation of the rats' forepaw or hindpaw, stimulation of the intact paw resulted in fMRI activation of ipsilateral as well as contralateral SI. To address whether inter-cortical communication is required for this cortical reorganization, the healthy hindpaw SI representation was stereotaxically lesioned in rats which had the other hindpaw denervated. No fMRI activation was detected in the ipsilateral SI cortex after lesioning of the contralateral cortex. These results indicate that extensive inter-hemispheric cortical-cortical reorganization can occur in the rodent brain after peripheral nerve deafferentation and that cortical-cortical connections play a role in mediating this inter-hemispheric cortical reorganization

    Peripheral Nerve Injury Induces Changes in the Activity of Inhibitory Interneurons as Visualized in Transgenic GAD1-GCaMP6s Rats

    No full text
    Peripheral nerve injury induces cortical remapping that can lead to sensory complications. There is evidence that inhibitory interneurons play a role in this process, but the exact mechanism remains unclear. Glutamate decarboxylase-1 (GAD1) is a protein expressed exclusively in inhibitory interneurons. Transgenic rats encoding GAD1&ndash;GCaMP were generated to visualize the activity in GAD1 neurons through genetically encoded calcium indicators (GCaMP6s) in the somatosensory cortex. Forepaw denervation was performed in adult rats, and fluorescent Ca2+ imaging on cortical slices was obtained. Local, intrahemispheric stimulation (cortical layers 2/3 and 5) induced a significantly higher fluorescence change of GAD1-expressing neurons, and a significantly higher number of neurons were responsive to stimulation in the denervated rats compared to control rats. However, remote, interhemispheric stimulation of the corpus callosum induced a significantly lower fluorescence change of GAD1-expressing neurons, and significantly fewer neurons were deemed responsive to stimulation within layer 5 in denervated rats compared to control rats. These results suggest that injury impacts interhemispheric communication, leading to an overall decrease in the activity of inhibitory interneurons in layer 5. Overall, our results provide direct evidence that inhibitory interneuron activity in the deprived S1 is altered after injury, a phenomenon likely to affect sensory processing

    NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: Protection against impairments in axonal transport

    No full text
    NAP (davunetide) is a novel neuroprotective compound with mechanism of action that appears to involve microtubule (MT) stabilization and repair. To evaluate, for the first time, the impact of NAP on axonal transport in vivo and to translate it to neuroprotection in a severe neurodegeneration, the SOD1-G93A mouse model for amyotrophic lateral sclerosis (ALS) was used. Manganese-enhanced magnetic resonance imaging (MRI), estimating axonal transport rates, revealed a significant reduction of the anterograde axonal transport in the ALS mice compared to healthy control mice. Acute NAP treatment normalized axonal transport rates in these ALS mice. Tau hyperphosphorylation, associated with MT dysfunction and defective axonal transport, was discovered in the brains of the ALS mice and was significantly reduced by chronic NAP treatment. Furthermore, in healthy wild type (WT) mice, NAP reversed axonal transport disruption by colchicine, suggesting drug-dependent protection against axonal transport impairment through stabilization of the neuronal MT network. Histochemical analysis showed that chronic NAP treatment significantly protected spinal cord motor neurons against ALS-like pathology. Sequential MRI measurements, correlating brain structure with ALS disease progression, revealed a significant damage to the ventral tegmental area (VTA), indicative of impairments to the dopaminergic pathways relative to healthy controls. Chronic daily NAP treatment of the SOD1-G93A mice, initiated close to disease onset, delayed degeneration of the trigeminal, facial and hypoglossal motor nuclei as was significantly apparent at days 90–100 and further protected the VTA throughout life. Importantly, protection of the VTA was significantly correlated with longevity and overall, NAP treatment significantly prolonged life span in the ALS mice

    Multi-session delivery of synchronous rTMS and sensory stimulation induces long-term plasticity

    No full text
    Background: Combining training or sensory stimulation with non-invasive brain stimulation has shown to improve performance in healthy subjects and improve brain function in patients after brain injury. However, the plasticity mechanisms and the optimal parameters to induce long-term and sustainable enhanced performance remain unknown. Objective: This work was designed to identify the protocols of which combining sensory stimulation with repetitive transcranial magnetic stimulation (rTMS) will facilitate the greatest changes in fMRI activation maps in the rat's primary somatosensory cortex (S1). Methods: Several protocols of combining forepaw electrical stimulation with rTMS were tested, including a single stimulation session compared to multiple, daily stimulation sessions, as well as synchronous and asynchronous delivery of both modalities. High-resolution fMRI was used to determine how pairing sensory stimulation with rTMS induced short and long-term plasticity in the rat S1. Results: All groups that received a single session of rTMS showed short-term increases in S1 activity, but these increases did not last three days after the session. The group that received a stimulation protocol of 10 Hz forepaw stimulation that was delivered simultaneously with 10 Hz rTMS for five consecutive days demonstrated the greatest increases in the extent of the evoked fMRI responses compared to groups that received other stimulation protocols. Conclusions: Our results provide direct indication that pairing peripheral stimulation with rTMS induces long-term plasticity, and this phenomenon appears to follow a time-dependent plasticity mechanism. These results will be important to lead the design of new training and rehabilitation paradigms and training towards achieving maximal performance in healthy subjects

    Layer specific tracing of corticocortical and thalamocortical connectivity in the rodent using manganese enhanced MRI

    No full text
    Information about layer specific connections in the brain comes mainly from classical neuronal tracers that rely on histology. Manganese Enhanced MRI (MEMRI) has mapped connectivity along a number of brain pathways in several animal models. It is not clear at what level of specificity neuronal connectivity measured using MEMRI tracing can resolve. The goal of this work was to determine if neural tracing using MEMRI could distinguish layer inputs of major pathways of the cortex. To accomplish this, tracing was performed between hemispheres of the somatosensory (S1) cortex and between the thalamus and S1 cortex. T mapping and T weighted pulse sequences detected layer specific tracing after local injection of MnCl. Approximately 12\ua0h following injections into S1 cortex, maximal T reductions were observed at 0.6 ± 0.07 and 1.1 ± 0.12\ua0mm from the brain surface in the contralateral S1. These distances correspond to the positions of layer 3 and 5 consistent with the known callosal inputs along this pathway. Four to six hours following injection of MnCl into the thalamus there were maximal T reductions between 0.7 ± 0.08 and 0.8 ± 0.08\ua0mm from the surface of the brain, which corresponds to layer 4. This is consistent with terminations of the known thalamocortical projections. In order to observe the first synapse projection, it was critical to perform MRI at the right time after injections to detect layer specificity with MEMRI. At later time points, tracing through the cortical network led to more uniform contrast throughout the cortex due to its complex neuronal connections. These results are consistent with well established neuronal pathways within the somatosensory cortex and demonstrate that layer specific somatosensory connections can be detected in vivo using MEMRI
    corecore