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Interhemispheric interaction has a major role in various neurobehavioral functions. Its

disruption is a major contributor to the pathological changes in the setting of brain

injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as

neurodegenerative diseases. Because interhemispheric interaction has a crucial role

in functional consequence in these neuropathological states, a review of noninvasive

and state-of-the-art molecular based neuromodulation methods that focus on or

have the potential to elucidate interhemispheric interaction have been performed. This

yielded approximately 170 relevant articles on human subjects or animal models. There

has been a recent surge of reports on noninvasive methods such as transcranial

magnetic stimulation and transcranial direct current stimulation. Since these are

noninvasive techniques with little to no side effects, their widespread use in clinical

studies can be easily justified. The overview of novel neuromodulation methods and

how they can be applied to study the role of interhemispheric communication in

neural injury and neurodegenerative disease is provided. Additionally, the potential

of each method in therapeutic use as well as investigating the pathophysiology of

interhemispheric interaction in neurodegenerative diseases and brain injury is discussed.

New technologies such as transcranial magnetic stimulation or transcranial direct current

stimulation could have a great impact in understanding interhemispheric pathophysiology

associated with acquired injury and neurodegenerative diseases, as well as designing

improved rehabilitation therapies. Also, advances in molecular based neuromodulation

techniques such as optogenetics and other chemical, thermal, and magnetic based

methods provide new capabilities to stimulate or inhibit a specific brain location and

a specific neuronal population.

Keywords: neuromodulation, noninvasive, transcranial magnetic stimulation, transcranial direct current,

optogenetic

BACKGROUND

Although, some high order information processing such as attention and language function are
lateralized to a region in one hemisphere, correlation of activity between homotopic regions
of the two hemispheres is important for sensory and motor processing (Stark et al., 2008).
Magnetic imaging research in neurological diseases has progressed in various areas: detecting
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specific molecular target (Wadghiri et al., 2013), microstructural
injury (Shin et al., 2014), as well as alterations in functional
correlation of different regions of the brain (Boly et al., 2009; Iraji
et al., 2015). Specifically, in functional imaging the significance
of interhemispheric crosstalk has been described in the literature
over the years. Imaging researchers have described this as
interhemispheric functional connectivity, and it is commonly
found in homologous regions of the two hemispheres (Salvador
et al., 2005; Margulies et al., 2007). This interhemispheric
connectivity is found widely throughout various brain regions:
in a functional magnetic resonance imaging (MRI) study of brain
regions during resting state, a significant correlation of activities
of many bilateral symmetric regions were found (Margulies et al.,
2007).

Notable disruptions in interhemispheric connectivity were
shown by studies on partial or complete split brain patients.
Functional MRI studies show that interhemispheric connectivity
between sensory areas is topographically organized (Fabri et al.,
2011). Bilateral cortical activation is evoked by communication
via different parts of the corpus callosum: gustatory stimuli
induces bilateral gustatory cortex activation via anterior corpus
callosum, tactile stimuli induces bilateral primary somatosensory
area activation via posterior body of corpus callosum, and visual
stimulation induces bilateral primary visual cortex activation via
splenium. Among patients with partial injury in any region of
the corpus callosum, bilateral cortical activation occurred with
sensory stimuli only when appropriate region of the corpus
callosum was not affected: e.g., bilateral visual cortex activation
was preserved only when injury did not affect the splenium
(Polonara et al., 2015).

Other task based studies also showed interesting insights into
interhemispheric information transfer in callosotomy patients.
In a patient that had inadvertent sparing of rostral and splenial
corpus callosum there was severe limitation in information
transfer: there was no transfer of color, shape and size
information, but word information was possible between the two
hemispheres (Funnell et al., 2000). However, Kingstone et al.
showed that in a patient with complete callosotomy, there was
no transfer of abstracted word information between the two
hemispheres (Kingstone and Gazzaniga, 1995).

However, a study on resting state connectivity of the
two hemispheres in a patient with complete split syndrome
showed surprising preservation of interhemispheric interaction
(Uddin et al., 2008). This patient had complete forebrain
commissurotomy which involved section of anterior
commissure, corpus callosum, hippocampal commissure,
and massa intemedia for treatment of intractable epilepsy
in the past. The authors compared functional connectivity
of lingual gyrus, cingulate gyrus, and medial frontal gyrus
between the patient and normal subjects, showing that 2
of 3 (lingual gyrus and cingulate gyrus) had normal range
of interhemispheric interaction. The authors of this study
postulated the reason for preservation of large degree of bilateral
activation despite complete commissurotomy as subcortical
coordination of bihemispheric activity. Thus in summary, there
are topographical functional losses and severe disruption of
interhemispheric information transfer in split brain patients, but

there is a preservation of limited connectivity between the two
hemispheres likely via subcortical pathways.

The functional as well as structural interhemispheric
connectivity is extensive and has a major role in modulation
of bilateral visual cortices (Nakamura et al., 2008; Schmidt
et al., 2010), somatosensory and motor cortices (Killackey et al.,
1983; Perez et al., 2007; Baek et al., 2016), and auditory cortices
(Imig and Reale, 1980). The initial studies of interhemispheric
connections shown in tracing experiments using animal brain
preparations are now complemented by structural and functional
imaging studies of humans in the recent two decades.

In various pathological states of the brain, whether acute
injury or neurodegenerative disease, there are disruptions
of interhemispheric connectivity. The strong correlation of
interhemispheric connectivity was absent in a minimally
conscious patient who had a brainstem lesion (Salvador et al.,
2005). Also, subjects with various disease states such as
Parkinson’s disease (Spagnolo et al., 2013; Hohlefeld et al., 2014;
Luo et al., 2015), epilepsy (Thordstein and Constantinescu, 2012;
Liu et al., 2013; Lin et al., 2014; Yadollahpour et al., 2014;
VanHaerents et al., 2015), stroke (Buchkremer-Ratzmann et al.,
1996; Liepert et al., 2000; Takatsuru et al., 2009; Lim et al., 2014;
Liu et al., 2015), and peripheral nerve injury (Pelled et al., 2007b,
2009; Pawela et al., 2010; Li et al., 2011; Han et al., 2013) showed
alteration of interhemispheric interaction. Understanding the
process of the disruption of interhemispheric interaction in brain
injury and neurodegenerative disease may give important clues
in optimizing rehabilitation and recovery from disease states.

In the past two decades, the neuroscience technology has been
rapidly progressing in various forms of neuromodulation
research given the potential clinical impact in various
neurological diseases. Although most interfaces involved in
neuromodulation requires invasive implantation, noninvasive
neuromodulation techniques have been developed and tested in
both animal and human subjects recently. Given the invasiveness
of surgical procedures such as deep brain stimulation (DBS)
currently used in clinical subjects, the future possibility of
noninvasive neuromodulation technique is an attractive
solution. Noninvasive neuromodulation methods such as
transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS) show long-lasting effects
on neuronal functions (Gersner et al., 2011; Vestito et al.,
2014). Although they have their own inherent problems such
as nonspecific effects on the adjacent regions to the target
region, technological advancements may increase the region
specificity of the noninvasive neuromodulation techniques
in the future. Moreover, recent advancements in methods
such as optogenetics and chemogenetics have allowed precise
modulation of individual neural circuits and subregions of the
brain in animal models.

With ongoing research on these novel neuromodulation
techniques by many research groups throughout the world, there
is a great future potential for this category of neuromodulation.
In this review, we will highlight recent advancements of
novel methods of neuromodulation in the investigation
of interhemispheric activity in brain injury as well as
neurodegenerative diseases. In addition to TMS and tDCS,
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more invasive methods such as optogenetics, chemogenetics, as
well as DBS will also be reviewed for comparison.

INTERHEMISPHERIC CONNECTIVITY IN
DBS STUDIES

Although DBS has been commonly used in treatment of
Parkinson’s disease, more recently it has been applied in cases
of medically refractory depression and obsessive compulsive
disease with some degree of success (Lakhan and Callaway,
2010). Also, an important study in 2007 showed that DBS can
be used to improve level of function in a severe TBI patient
(Schiff et al., 2007). In this study, a TBI patient who was in
minimally conscious state for 6 years after the initial injury was
subjected to bilateral central thalamic stimulation. Although, the
fact that thalamus has widespread projection of axons to various
cortical and subcortical structures the mechanism of thalamic
stimulation leading to increased neural function in minimally
conscious TBI patient was unclear. A preclinical research by
Lin et al. (2015) showed that interhemispheric connectivity
between the two thalami and dorsal striatummay be increased by
central thalamic stimulation. Recordings of local field potentials
(LFPs) were made from central thalami, ventral striatum, and
dorsal striatum during DBS of central thalami in awake rats
in this study. By assessing the synchronous neural activity of
these regions by a parameter termed coherence, connectivity
of these regions was assessed. These recordings showed that
there is increased connectivity between bilateral central thalami,
ventral striatum, and dorsal striatum induced by central thalamic
DBS. There is also increased intrahemispheric connectivity in
central thalamus, ventral striatum and dorsal striatum measured
by coherence. Thus, central thalamic DBS enhances both inter
and intrahemispheric connectivity. Central thalamic DBS may
potentially have similar effects on connectivity of TBI humans
and animal models, but this has not been described in the
literature yet.

Among Parkinson’s disease (PD) patients, scalp
electroencephalograms show that higher interhemispheric
coherence was associated with increased motor impairment, and
DBS of subthalamic nucleus (STN) reduced this interhemispheric
coherence at beta band (10–30Hz oscillations) especially over
sensorimotor regions (Silberstein et al., 2005; Weiss et al., 2015).
Another report showed that DBS of one STN can induce a
significant increase in multiunit spiking activity of a contralateral
STN among PD patients (Novak et al., 2009). Despite these
studies reporting functional connectivity between the two STNs
by several measures, there is no direct evidence of anatomical
connection between the two STNs. One potential means of
communication between the two STNs can be due to indirect
connections: STN and other structures of the basal ganglia
are connected to the thalamocortical projections, which then
converge via corpus callosum (Hohlefeld et al., 2014). Similarly,
interhemispheric striatal connections can be via cortical
projection to contralateral striatum (Fisher et al., 1986; Alloway
et al., 2009) or substantia nigra projection to contralateral
striatum (Douglas et al., 1987; Morgan and Huston, 1990).

Noninvasive Brain Stimulation
Animal studies have demonstrated that brain stimulation
entailing neurosurgical procedure can improve motor function
after brain injury by increasing functional connectivity
(Guggenmos et al., 2014) and expansion of cortical
representation areas (Plautz et al., 2016). Since brain stimulation
can enhance motor function during recovery from stroke in
animal models, there have already been feasibility studies of
neurosurgical procedures placing cortical or epidural electrodes
to improve motor recovery after stroke in humans (Brown et al.,
2006; Levy et al., 2008). However, due to the risk involved with
surgical complication and cost, more recent interest has been on
noninvasive methods that can provide stimulus. Two commonly
used methods in recent studies have been TMS and tDCS, which
are noninvasive, well-tolerated, and have demonstrated little to
no side effects in animal studies as well as clinical trials.

Transcranial Magnetic Stimulation
Transcranial magnetic stimulation is a noninvasive method
of stimulating specific brain regions. Its application involves
placing a coil over the region of interest, and by electromagnetic
induction currents are generated in the brain. Since noninvasive
stimulation of the brain reduces the risks encountered in
surgical patients such as hemorrhage, infection, and the cost
of the procedure, TMS has recently gained interest for use
in functional and behavioral research as well as rehabilitation
research after brain injury (Celnik et al., 2009; Lu et al., 2015) and
neurodegenerative disease (Ferbert et al., 1992; Spagnolo et al.,
2013; Bocci et al., 2016).It has been used widely in humans (Noh
et al., 2012; Wang et al., 2012; Sung et al., 2013; Bocci et al., 2016),
primates (Tischler et al., 2012; Mueller et al., 2014), as well as
rodents (Barnes et al., 2014; Andreou et al., 2016).

Due to its noninvasive advantages, TMS can be easily used to
study interhemispheric plasticity in healthy volunteers without
risk of complications such as infection or hemorrhage as in
surgical procedures. Though the mechanism of TMS is yet to be
clarified, our recent studies suggest that rTMS may lead to spike
time dependent plasticity (Banerjee et al., 2017), and therefore
an additional stimulus would significantly augment the impact of
rTMS on brain function. This particular feature is fundamental
to develop TMS-based protocol with long lasting effects and it
requires thorough investigation. Variations in TMS protocols that
are useful for understanding the interaction between the two
hemispheres have been utilized to understand interhemispheric
interaction in depth. Theta burst stimulation (TBS) is a protocol
of TMS using bursts of 3 pulses at 50Hz, and each burst stimulus
is given at pulses of 5 Hz. There are two types of TBS: continuous
TBS (cTBS) which is given as a continuous train over 40 s, and
intermittent TBS (iTBS) which is given as 2 s train repeated
every 10 s. When applied continuously (cTBS) over areas such
as left motor cortex, it can induce long term depression and
inhibition of activity. However, intermittent TBS (iTBS) can have
the opposite effect of long term potentiation or facilitation of
activity (Paulus, 2005). The role of cTBS on interhemispheric
as well as intrahemispheric connectivity was observed by
applying cTBS over left motor cortex and monitoring changes
in electroencephalogram (EEG) oscillations of the contralateral
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hemisphere (Noh et al., 2015). Inhibition using cTBS over left
motor cortex reduced functional connectivity of distant areas
of motor network: both interhemispheric and intrahemispheric
connectivity was reduced.

Transcranial magnetic stimulation has also been used to
study the interhemispheric connectivity among patients with
corpus callosum surgical lesions (Meyer et al., 1995). One
measure of interhemispheric connectivity is by monitoring
transcallosal inhibition, which is an inhibitory control of one
motor cortex to contralateral motor cortex by corpus callosum.
In subjects with intact anterior corpus callosum connections,
application of TMS over one primary motor cortex induced
inhibition of electromyographic response of ipsilateral hand
muscles. However, patients with lesions in the anterior part
of corpus callosum had reduced inhibition. This signified that
the inhibitory effect of TMS in subjects with intact anterior
corpus callosum was not due to the direct action of the TMS
on ipsilateral hemisphere but rather due to the effect of TMS
on transcallosal inhibitory function. Another report by Meyer
et al. (1998) endorsing this concept demonstrate how TMS can
be utilized to study the interhemispheric relationship of various
regions of the brain as well as discovering how certain structures
important for interhemispheric communication function.

Similar to these experiments, transcallosal inhibition has
been studied using paired pulse stimulation protocol that
applies TMS bilaterally. Whereas the previously mentioned
experiments by Meyer et al. used TMS only on one side for
interhemispheric inhibition of voluntary motor activity, paired
pulse stimulation applies TMS on two sides: TMS on one
side for interhemispheric inhibition (conditioning stimulus) and
a second TMS contralaterally to induce muscle contraction
(test stimulus). Both protocols used TMS for interhemispheric
inhibition, but the paired pulse stimulation protocol uses a
second TMS for direct stimulation of muscle contraction instead
of voluntary muscle contraction.

A recent example of this protocol was in a study of
interhemispheric interaction for scapulothoracic muscle control
(Matthews et al., 2013). In this study a test TMS was delivered
to the right motor cortex that corresponds to a trapezius
or serratus anterior muscle, leading to the corresponding
muscle contraction in the left side. Interhemispheric interaction
between the two motor cortices is assessed by a delivery
of a conditioning stimulus to the contralateral side which
can inhibit muscle contraction in an increasing manner
as conditioning stimulus intensity increases (Bologna et al.,
2012). Thus, the study is performed by initial delivery of
the conditioning stimulus, followed by contralateral delivery
of test stimulus with 4–8 ms delay. The study by Matthew
et al., demonstrated that there is interhemispheric inhibition
between the motor cortices that control upper trapezius muscles
but not lower trapezius or serratus anterior. Furthermore,
some studies have distinguished the two separate phases of
interhemispheric inhibition induced by conditioning stimulus:
long latency interhemispheric inhibition (LIHI) and short latency
interhemispheric inhibition (SIHI) (Udupa et al., 2010). Whereas
SIHI occurs at 10ms following conditioning stimulus, LIHI
occurs at 40ms following test stimulus. With increasing test

motor evoked potential amplitude, there was an increase in SICI
but not LIHI.

Transcranial Magnetic Stimulation Studies
in Stroke
Transcranial magnetic stimulation has been used to study the
interhemispheric interaction in pathological states such as stroke.
The paired pulse stimulus protocol has been utilized among
stroke patients to study interhemispheric interaction, showing
that there is decreased interhemispheric inhibition from the
infarcted hemisphere to non-infarcted hemisphere (Bütefisch
et al., 2008). In another study looking at further details of the
interhemispheric interactions between the infarcted and non-
infarcted hemispheres as well as LIHI and SIHI using paired pulse
stimuli, there was a significant increase in LIHI from non-stroke
to stroke side but no change in SIHI (Kirton et al., 2010).

In addition to studying the underlying neurological function
and interhemispheric connectivity, the ability to control TMS
to inhibit or facilitate target region of the brain can be used to
enhance recovery from disease. There have been several prior
studies of stimulating premotor or motor cortex in order to
manipulate interhemispheric competition and improve motor
function. These studies have shown various levels of motor
improvement by modulating interhemispheric balance of motor
regions (Meyer et al., 1995; Hanajima et al., 2001; Murase et al.,
2004; Baumer et al., 2006; Wang et al., 2012). These studies give
great promise for the use of TMS when there is interhemispheric
imbalance such as stroke.

Interhemispheric inhibition can be explained by bilateral
motor regions having a mutual inhibitory control of each other
(Murase et al., 2004; Bütefisch et al., 2008; Grefkes et al., 2008). In
order to generate unilateral limb movements, there is increased
neural activity of contralateral motor areas as well as inhibition
from contralateral motor areas to ipsilateral motor areas of
the brain. In neurological injury such as unilateral stroke, this
interhemispheric inhibitory balance is disrupted (Duque et al.,
2005; Volz et al., 2015). Noninvasive stimulation methods such
as TMS or tDCS have been used to modulate this imbalance of
inhibition.

In one study, patients receiving 3 months of TMS showed
improvement in various motor functions such as hand grip
strength, keyboard tapping, and NIH stroke scale (Khedr
et al., 2009). Also, cortical excitability of the stroke hemisphere
was increased and excitability of contralateral hemisphere was
decreased which agreed with the concept of using TMS to
reverse stroke induced imbalance in interhemispheric inhibitory
function.

Further studies on stroke patients have been performed
recently by the same group. When 30 patients with post stroke
nonfluent aphasia were subjected to rTMS for 10 days followed
by language training, there was a significant improvement in
language performance by behavioral tests (Khedr et al., 2014).
The rTMS consisted of 1 Hz stimulus over the right unaffected
Broca’s area and 20 Hz stimulus over the left affected Broca’s area,
showing that dual hemisphere rTMS to suppress transcallosal
inhibition from the right hemisphere while stimulating the left
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hemisphere may improve language performance. There was
no improvement in motor function as assessed by hand grip
strength in this study. However, the rTMS protocol was different,
consisting of targeting bilateral Broca’s area (Khedr et al., 2014)
instead of contralateral motor area of first dorsal interosseous
muscle (Khedr et al., 2009).

More recently, there have been a few other studies showing
improvements in motor function after TMS among stroke
patients. Similar to the dual hemispheric TMS concept in a
study by Khedr et al. a group of 54 hemiplegic stroke patients
received contralesional rTMS at 1 Hz and ipsilesional TBS
resulting in improvemdent of multiple measures of motor
function (Sung et al., 2013). When inhibitory TMS was applied
at the contralateral primary motor cortex followed by facilitatory
TBS applied at ipsilesional primary motor cortex, subjects had
improved motor function after 4 weeks of sessions (Sung et al.,
2013). There were improvements in finger flexormuscle strength,
Fugl-Meyer Assessment (FMA), Wolf Motor Function test which
is a composite measurement of speed, strength, and quality of
upper extremitymovement. A similar protocol of inhibitory TMS
contralaterally and facilitatory TBS ipsilaterally with a long term
follow up of 3 months showed long lasting improvement in
motor function (Wang C. P. et al., 2014).

Even when ipsilateral excitatory TMS and contralateral
inhibitory TMS are applied separately either of the two TMS
methods can improve motor function and have lasting effect for
12 weeks of observation period (Emara et al., 2010). Transcranial
magnetic stimulation can also be used in conjunction with
rehabilitation treatment. By using low frequency repetitive
TMS, stroke patients had significantly improved intracortical
facilitation, a measure of intracortical synaptic excitability (Mello
et al., 2015). Similarly, patients with stroke had improved motor
function when they were given inhibitory TMS at contralateral
primary motor cortex (Demirtas-Tatlidede et al., 2015) or
premotor cortex and primary motor cortex (Wang C. C. et al.,
2014). These pilot studies provide promising outlook for using
TMS among stroke patients in the future, but the optimal
parameters and timeline of stimulation for motor recovery are
yet to be determined.

An important insight that the authors of this review
suggest is that many of the current studies have selection
bias to subjects that respond most strongly to TMS. For
example, inclusion criteria by Sung et al. (2013), was only
patients between 3 and 12 months, since patients who are
more than 1 year post stroke were susceptible to rTMS
conditioning based on pilot study observation. Similarly, Emara
et al. (2010) had inclusion criteria as patients who showed
higher excitability (lower motor threshold). For practical
purposes, inclusion of patients who are best responders
to rTMS may be necessary as each clinical study cannot
include several thousand to tens of thousands of patients
without a serious commitment for time and resources of an
institution. However, understanding of the patient population
who are not as susceptible is a valuable information for
the community of neuroscientists because this would give us
mechanistic insights which can further be tested in preclinical
studies.

In the studies described in this section, a specific
interhemispheric pathway involved by TMS stimulation is
not specified and is only assumed to transcallossal (Khedr et al.,
2014). This is likely due to the previously well characterized
disconnection syndromes in patients in corpus callosum injuries,
and wide variety of motor and sensory information that is
communicated by corpus callosum. However, interhemispheric
connection via basal ganglia is also another likely circuit that
is modulated by TMS. Coordination of motor functions can
occur by bilateral STN communication as mentioned in the DBS
section, as well as interhemispheric nigrostriatal connection
projections which will be discussed in the following sections
describing TMS use in Parkinson’s disease research.

Transcranial Magnetic Stimulation Studies
in Traumatic Brain Injury
Although traumatic brain injury can result in various different
structural damages, damages to the long white matter tracks
are commonly found. Among them, one of the most vulnerable
regions of damage is corpus callosum which has a central
role in interhemispheric communication (Ljungqvist et al.,
2011; Wu et al., 2013). Clinical symptoms of corpus callosum
injury are also demonstrated in TBI patients (Falchook et al.,
2015), and functional imaging of TBI patients show reduced
interhemispheric functional connectivity in hippocampus and
anterior cingulate cortex (Marquez de la Plata et al., 2011), as well
as primary motor cortex and superior marginal gyrus (Kasahara
et al., 2010). These findings have also been substantiated by
EEG study with recordings of visual event-related potential,
where corpus callosum integrity was evaluated among pediatric
TBI patients (Ellis et al., 2016). A measure of corpus callosum
integrity used in this study was interhemispheric transfer time,
which refers to time it takes for information to cross between the
hemispheres by corpus callosum. The TBI subjects in this study
had significantly reduced interhemispheric transfer time and
poor neurocognitive functions compared to controls. In another
TBI study, pediatric TBI patients were studied and a subgroup of
the patients showed reduced interhemispheric transfer time that
was also associated with impairment of white matter detected on
diffusion weighted imaging (Dennis et al., 2015).

Although the dysfunction of interhemispheric
communication following TBI has been characterized by
these studies, the role of TMS in promoting the recovery
from this pathology has not been investigated. There have
also been a few case reports and small case series on the use
of TMS for the treatment of depression after TBI (Fitzgerald
et al., 2011), neurobehavioral deficits (Louise-Bender Pape
et al., 2009), and post concussive syndrome (Koski et al., 2015)
which showed varying levels of benefit. Investigations on the
mechanisms underlying this behavioral improvement show that
TMS improves cortical excitability. Cortical excitability was
compromised in human patients (Bagnato et al., 2012; Fecteau
et al., 2015) and animal models (Li et al., 2014), and motor
evoked potential, a measurement of motor cortex excitability,
had increased threshold following TBI (Moosavi et al., 1999;
Chistyakov et al., 2001). Capitalizing on these findings, TMS
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was successful in restoring cortical excitability in a rat model
of pediatric TBI (Li et al., 2014). In these rats, TMS improved
cortical excitability measured by amplitude and number of
neuronal spikes, amplitude of local field potential, and functional
MRI response. It also increased immunohistological markers
associated with plasticity, and it decreased hyperactivity which
is a symptom that is often observed in pediatric TBI patients (Li
et al., 2014; Lu et al., 2015).

However, these recent studies on the effects of TMS on
TBI subjects do not focus on how it affects interhemispheric
communication. Given the commonly found corpus callosum
damage and evidence of interhemispheric dysfunction in TBI,
there is room for further investigation focusing on alteration of
interhemispheric interaction.

Transcranial Magnetic Stimulation Studies
in Parkinson’s Disease
Another possible application of TMS to further understand
interhemispheric connectivity in a neurodegeneration is
in PD research. The important role of interhemispheric
interaction in PD is shown by interhemispheric connection
of the dopaminergic circuitry: interhemispheric nigrostriatal
projections have been identified in experiments where rats
were injected with tracer dyes into caudate nucleus with
subsequent staining of bilateral substantia nigra (Pritzel et al.,
1983b). Although, most of the projections from substantia
nigra go to ipsilateral striatum, about 3% of the projection are
made to contralateral striatum as evidenced by tracing studies
in rats (Douglas et al., 1987). Thus, they have been termed
“interhemispheric nigrostriatal neurons.” Tracer studies have
shown that these projections are terminated contralaterally in
both caudate and putamen (Morgan and Huston, 1990). Also,
as chemical lesion of studies of the striatum support the idea
that those projections are not branching to both contralateral
and ipsilateral side, but that there are two separate projections
to ipsilateral side and contralateral side. In addition to corpus
callosum connectivity, crossing to the opposite hemispheres is
also found at thalamic commissure, indicating that this may be
another major component of interhemispheric connectivity.

Asides from anatomical evidence, the important role of
interhemispheric interaction in PD were described in PD
models using toxic chemicals such as 6-hydroxydopamine (6-
OHDA) which causes degeneration of dopaminergic neurons
(Pritzel et al., 1983a; Sullivan et al., 1993; Roedter et al., 2001).
Unilateral 6-OHDA lesion caused increase in interhemispheric
nigrostriatal neurons (Pritzel et al., 1983a). Moreover, Pelled
et al. explored interhemispheric connection in the setting of
injury using fMRI of unilaterally 6-OHDA lesioned rats (Pelled
et al., 2002, 2007a). In these studies, rats had strong bilateral
sensorimotor cortex or habenular complex activation, which
may be explained by the following mechanism: unilateral lesion
of basal ganglia causes overactivation of both hemispheres via
extensive interhemispheric connectivity. In addition, resting
state imaging of functional connectivity of 6-OHDA lesioned
rats demonstrated bilaterally decreased temporal and spatial
variances which were indicative of increased synchronization and
activity bilaterally (Pelled et al., 2005).

In light of these prior studies characterizing interhemispheric
connectivity in animal models of PD, a noninvasive technique
such as TMS may be very useful in animal experiments for
PD. Especially given the fact that current non-pharmacological
interventions for PD are invasive procedures such as DBS, a
noninvasive intervention to treat neurodegenerative disease is an
attractive strategy. When 6-OHDA injured rats were treated by
4 weeks of daily TMS, they showed improvements in behavior
by increased locomotion and decreased amphetamine-induced
rotation (Lee et al., 2013). Additionally, there was improvement
in biochemical and histologic markers: increased level of neural
growth factors and increased number of tyrosine hydroxylase
positive dopaminergic neurons. Similarly, TMS given for the
same duration reduced apomorphine induced rotatory behavior
in rats and also prevented loss of dopaminergic neurons in
substantia nigra (Yang et al., 2010).

Prior studies have utilized TMS to study the changes in
interhemispheric interaction in PD patients. In PD patients
with asymmetric motor symptoms, application of TMS was
applied to either hemisphere (Spagnolo et al., 2013). This
revealed shorter and smaller ipsilateral silent period, a measure
of interhemispheric inhibition in the hemisphere that was more
severely affected. Similarly, another experiment utilized paired
pulse TMS on opposite hemispheres: a conditioning TMS and
test TMS (Ferbert et al., 1992). Test TMS is given to elicit
a motor response on the opposite side limb muscle that can
be detected by electromyography (EMG). Conditioning TMS is
given over the motor cortex contralateral to the side of test TMS,
and its role is to inhibit the EMG response induced by the test
TMS. By this method using two separate TMS, the degree of
interhemispheric inhibition can be directly tested. This has been
a useful parameter to study the interhemispheric connectivity
in PD patients using TMS. This study showed that subgroups
within the population of PD having different motor symptoms
had different degrees of interhemispheric inhibition. The PD
patients with mirror movements (MM), which are involuntary
movements on the contralateral side of the body when one
side is moving, had reduced interhemispheric inhibition than
PD patients without MM. Thus, there is an association between
interhemispheric inhibition and clinical symptoms, and one may
hypothesize that dysregulation of interhemispheric inhibition
significantly contributes to some of the major symptoms of PD.
Although these studies describe interhemispheric connection
in the dopaminergic circuitry, in human subjects there are no
reports of direct interhemispheric connection such as nigro-
striatal projection as it has been shown in rodents.

Based on these findings, application of TMS may be further
optimized for use in PD patients for rehabilitation in the near
future. Human trials of TMS resulted in a mixed set of results:
some have shown evidence of improvement from PD symptoms,
but others have shown only limited benefit. Applications of 50
Hz TMS in motor and dorsolateral cortices (Benninger et al.,
2012) or 50 Hz TMS in motor cortex only (Benninger et al.,
2011) resulted in no change in the measures of movement such as
bradykinesia, gait, and Unified Parkinson’s Disease Rating Scale.
However, there were benefits in mood with motor cortex and
dorsolateral cortex stimulation (Benninger et al., 2012). Among
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PD patients who had apomorphine-induced dyskinesias, rTMS
at 1Hz on supplementary motor area reduced dyskinesias (Koch
et al., 2005). The control experiment in this study was performed
by the same test subjects undergoing sham 1 Hz rTMS where
same intensity stimulus (90% of resting motor threshold) was
provided but the TMS coil was titled at 90◦ off the scalp so
that no current was induced in the brain. Sham rTMS group
did not have any change in dyskinesia. In another study by the
same group, rTMS application to cerebellum reduced levodopa-
induced dyskinesias in 20 PD patients (Koch et al., 2009). Control
experiment in this study was performed by application of sham
rTMS: another 20 patients with stimulus coil tilted 90◦ away
from the scalp. Also, rTMS was applied in the neck of the test
subjects 3 months after the original experiment to evaluate for
possible confounding effects of stimulating afferent fibers in the
neck. In both studies, the experimental group receiving rTMS had
significant reductions in dyskinesia compared to control groups.

Although the location of stimulus is a major factor that
determines the degree of improvement from PD, differences
in duration and parameters of stimuli are also important to
consider. A single conclusion is difficult to make from these
studies given that multiple methods of functional assessment
are used. Moreoever, control experiments for rTMS are also
different making direct comparisons difficult. Many of the
human studies have used widely different stimulus protocols and
further clarification is needed in future studies to find optimal
parameters to be applied in PD patients.

Transcranial Magnetic Stimulation Studies
in Epilepsy
Antiepileptogenic effects of TMS was demonstrated in animal
models (Akamatsu et al., 2001; Rotenberg et al., 2008; Lin
et al., 2014; Yadollahpour et al., 2014) and human subjects
(Menkes and Gruenthal, 2000; Kinoshita et al., 2005; Thordstein
and Constantinescu, 2012; Liu et al., 2013; VanHaerents et al.,
2015). Animal models of chemical induced seizure showed that
specifically lower frequency stimulation (0.25–2Hz range) has
inhibitory effects on neuronal excitability. This property of low
frequency TMS means that it can be used as a tool to provide
anticonvulsant effect. Thus, several of these listed case studies and
small case series of refractory epilepsy patients showed significant
reductions in seizures when low frequency TMS was applied.
Specifically, interhemispheric inhibition in epilepsy patients was
explored in one study: 18 patients prior to and after temporal
epilepsy surgery were assessed for interhemispheric inhibition
by applying TMS (Läppchen et al., 2011). There was significant
increase in interhemispheric inhibition tested by applying TMS
postoperatively, demonstrating how TMS can be used to assess
interhemispheric interaction in epilepsy. Since interhemispheric
interaction plays a central role in pathophysiology of epilepsy,
further studies similar to this can give us more insight into
alteration of interhemispheric communication in epilepsy.

The importance of interhemispheric interaction in epilepsy
is evidenced by its involvement in seizure propagation.
For generalized seizures involving bilateral hemispheres, the
important role of corpus callosum in epilepsy is widely accepted

(Wieshmann et al., 2015). Surgical resection of corpus callosum
has been established as a palliative procedure for these patients
given the concept of interhemispheric propagation of seizure
activity (Fuiks et al., 1991; Cendes et al., 1993). In addition, the
contribution of interhemispheric connections other than corpus
callosum such as hippocampal and anterior commissures are also
important in interhemispheric communication. Early studies by
Bogen et al. in the 60s–70s on patients who received complete
corpus callosotomy for epileptic patients showed that anterior
and posterior commissures in addition to corpus callosum have
important roles in interhemispheric communication. Subjects
with anterior or posterior commissurotomies and corpus
callosotomies have variety of interhemispheric disconnection
syndromes (Bogen et al., 1965).

Prior diffusion tensor imaging results showed white matter
derangements in these areas in temporal lobe epilepsy patients
with bilateral involvement compared to patients with unilateral
disease (Miró et al., 2015). In future studies, further investigation
on using TMS to inhibit seizure propagation via interhemispheric
connection and exploring pathological interhemispheric
communication in epilepsy patients may be explored.

Transcranial Direct Current Stimulation
Another important method of noninvasive neurostimulation
is transcranial direct current stimulation (tDCS) which uses
electrodes placed on the surface of the scalp to deliver low
amplitude current (1–2 mA) to the subject. Similar to the
parameter specific effects of TMS (e.g., cTBS reducing neuronal
activity whereas iTBS increasing neuronal activity), the polarity
of tDCS can affect the neuronal activity. Whereas cathodal tDCS
decreases the excitability of neurons, anodal tDCS increases the
excitability. Although the mechanism of tDCS is not thoroughly
reported in the literature, recent findings by Monai et al. show
that tDCS induces astrocytic calcium surges without affecting
local field potential. It also enhances sensory evoked cortical
response in an alpha-1 adrenergic receptor dependent manner
(Monai et al., 2016). As further research on its mechanism
progress, the neuromodulation research community will likely
see further enhancements and cell specific targeting strategies in
the future.

Transcranial direct current stimulation was used to improve
various functional measures in Parkinson’s disease (Kaski et al.,
2010; Manenti et al., 2014), stroke (Boggio et al., 2007; Di Lazzaro
et al., 2014; Meinzer et al., 2016; Valiengo et al., 2016), and
traumatic brain injury (Kang et al., 2012; Yoon et al., 2016). This
technique has been tested in humans as well as monkey and
rats (Baker et al., 1995; Notturno et al., 2014; Lee et al., 2015;
Sellers et al., 2015; Yoon et al., 2016). Similar to TMS studies
discussed in earlier sections, the alteration in interhemispheric
interaction following these disease states can be investigated
also by using tDCS. Moreover, interhemispheric connectivity
can also be enhanced by application of tDCS. Interhemispheric
functional connectivity, asmeasured by quantitative EEG (qEEG)
parameters in healthy volunteers increased following a single
session of tDCS (Castillo Saavedra et al., 2014; Morales-Quezada
et al., 2014). As a measure of interhemispheric connectivity,
these reports analyzed the level of interhemispheric coherence
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which is defined as a linear relationship between the specific
frequency waves (alpha, beta, and theta waves) between the two
hemispheres.

In addition, tDCS has been used to induce interhemispheric
inhibition similarly to the use of TMS to study interhemispheric
inhibition (Läppchen et al., 2011) described in a previous section.
Anodal tDCS increased interhemispheric inhibition whereas
cathodal tDCS decreased interhemispheric inhibition (Tazoe
et al., 2014). This was assessed by the change in the amplitude
of motor evoked potentials when either anodal or cathodal
tDCS was applied to primary motor cortex. Electromyography
measurements of motor evoked potentials were measured in the
metacarpophalangeal joints of the test subjects before and after
the tDCS. Subjects who received anodal tDCS had facilitation
whereas subjects who received cathodal tDCS had inhibition
of motor evoked potentials. This demonstrated the potential
use of tDCS in analyzing various deficits in interhemispheric
interaction for brain injury as well as neurodegenerative
diseases in future studies. Another interesting method of tDCS
application is via using it in conjunction with TMS: tDCS on
one hemisphere and TMS on the contralateral hemisphere can
be used simultaneously to increase cortical excitability assessed
by motor evoked potential (Park et al., 2014). Future studies
will likely focus on finding optimal parameters of tDCS for
individual type of disease as well as methods of combining
multiple neuromodulation techniques as described here.

Despite these reports of beneficial effects of tDCS, there have
been various issues of replicability in tDCS studies. Common
variations in skull size or even slight errors and changes in
electrode placement can result in significant difference in electric
field provided by the tDCS (Minhas et al., 2012; Kessler et al.,
2013; Woods et al., 2015). Using a finite element model to
compare adult vs. a 12 year old brain, there was a significant
difference in electric field (adolescent brain had up to twice the
peak electrical field compared to adult brain) attributed to size
difference (Minhas et al., 2012; Kessler et al., 2013). Also, another
study varied the position of electrodes to study the effects of
electrode drift at increments of 5% (1–1.5 cm movement; Woods
et al., 2015). This drift commonly occurs since the elastic straps

used to hold the electrodes can move unless caution is taken.
There is a growing concern of replicability in tDCS studies given
such variability, and future tDCS studies need improvedmethods
to standardize and maintain electrode placements to prevent this
confounding factor.

NOVEL NONINVASIVE
NEUROMODULATION TECHNIQUES

Major advances in molecular and synthetic biology have
revolutionized the ability to control cell excitability in living
organisms and greatly impacted basic sciences. Tools such as
optogenetics and chemogenetics have the advantages of cell
type specificity and superior spatial and temporal resolution
compared to prior neuromodulation methods. Also, whereas
TMS and tDCS affect wide regions of the brain, these novel tools
can specifically control a cell type and circuit (Table 1).

Optogenetic Manipulations of
Interhemispheric Activity
In the last few years the scientific community has seen a
surge of high impact research utilizing optogenetics techniques.
Although, the genetically targeted use of light activated neural
activity is just over a decade old (Boyden et al., 2005; Li et al.,
2005; Deisseroth et al., 2006; Aravanis et al., 2007), it has gained
much attention due to the capacity to precisely stimulate or
silence neurons at a millisecond time scale. Moreover, it can
be targeted to specific neuronal subtypes by cre recombinase
drivers and viral vectors (Rothermel et al., 2013; Tsien, 2016).
Channelrhodopsin (ChR2), a photosensitive ion channel that
depolarizes and leads to activation of neural activity when
stimulated, was the only protein used during the early days
of optogenetic techniques. Further discovery of light activated
chloride pump halorhodopsin which hyperpolarizes when
photostimulated lead to the capacity to manipulate the neural
activity (Zhang et al., 2007). With this discovery, neuroscientists
can modulate neural circuits bidirectionally, by either activating
it using ChR2 or silencing it by using halorhodopsin.

TABLE 1 | Novel noninvasive neuromodulation techniques.

Technique Subjects Pathology Stimulus characteristics Advantages Disadvantages

TMS Humans,

Primates,

Rats

TBI, Stroke, Parkinson’s

disease,

Huntington’s disease, Epilepsy

>1 Hz TMs or iTBS: increases

excitability

<1 Hz TMS or cTBS: decreases

excitability

Fully noninvasive Effects large brain regions,

Potentially difficult to predict area

of current, Limited to surface

areas, Not cell specific

tDCS Humans,

Primates,

Rats

TBI, Stroke, Parkinson’s

disease, Epilepsy, Alzheimer’s

disease

Anodal: Increases excitability

Cathodal: Decreases excitability

Fully noninvasive Effects large brain regions,

Potentially difficult to predict area

of current, Limited to surface

areas, Not cell specific

Optogenetics Primates,

Rats

Stroke, Parkinson’s disease,

Peripheral nerve injury

Channelrhodopsin: Depolarizes

neurons

Halorhodopsin: Hyperpolarizes

neurons

Cell type specific, Location

specific, Temporally

specific

Requires intracranial injection for

gene delivery, Requires

implantation of optic fibers

General characterization of each major technique are described, as well as the subjects of research and their advantages and disadvantages.
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Given the high spatial and cell type specific nature of
optogenetics, this technique can be used to study much more
detailed mapping of interhemispheric connections. Optogenetic
stimulation was used to map callosal projections previously
(Petreanu et al., 2007). This study demonstrated the connection
of different cortical layers via corpus callosum projection using
a mouse brain slice, by photostimulating ChR2 positive axons
on the layer of somatosensory cortex and detecting synaptic
currents with whole-cell recording at the contralateral side.
In addition, optogenetic techniques can be used for direct
modulation of altered interhemispheric connections to aid in
research of rehabilitation following injury.

Despite the advantages of cell specific targeting and isolated
stimulation of specific neural circuitry, optogenetic techniques
still have disadvantages that still warrants consideration. The
initial intracranial injection of ChR2 gene and implantation of
the optic probe is an invasive process. Optogenetics has been
widely applied in preclinical settings. But in order to translate
this technology to clinical setting research regarding the safety of
gene delivery and miniaturizing the hardware necessary for light
activation is required.

Interhemispheric connections play a significant role in
post-injury cortical plasticity (Pelled et al., 2007b). In a rat
model of peripheral nerve injury, optogenetic approaches
were used to manipulate interhemispheric communication and
facilitate plasticity (Li et al., 2011). In this study, rats first
underwent unilateral denervation of a forepaw, leading to
sensory deprivation on the contralateral hemisphere. Rats were
the injected with viral agent targeting excitatory pyramidal

neurons with halorhodopsin on the healthy somatosensory
cortex. Light activation of halorhodopsin in the healthy cortex
combined with forepaw stimulation lead to increase of excitatory
neuronal activity in the deprived somatosensory cortex. These
changes were due to modulation of transcallosal interaction
between the two hemispheres. This is a promising concept
that can be used to enhance neural recovery from injury
where interhemispheric interaction has a major role, such as
stroke, traumatic brain injury, and even neurodegenerative
diseases.

In the setting of stroke, optogenetic stimulation has also
been used to study the cortical connectivity and activity of
peri-infarct sites (Lim et al., 2014). The symmetric network
present in sham animals was disrupted after stroke, and
optogenetic stimulation of the infarcted cortex did not lead
to significant depolarizations. In addition, there have been
a few recent reports on the concept of using this technique
for recovery from stroke (Cheng et al., 2014a,b, 2016). In
transgenic mice expressing ChR2, middle cerebral artery
occlusion was performed (Cheng et al., 2014b). Rats underwent
implantation of optical fiber over the motor cortex affected
by stroke and underwent stimulation for 10 days. Following
optogenetic stimulation, multiple measures suggested improved
recovery: improved cerebral blood flow, increased neurotrophin
expression, and better performance on rotating beam test.
Similar to the study by Li et al. (2011), these results indicate
that the concept of manipulating input to the neurons during
reorganization phase following injury can be impactful
in the rehabilitation arena. Specifically, interhemispheric

TABLE 2 | Preclinical studies using optogenetic methods for interhemispheric communication.

Animals (study) Interhemispheric

circuit

Target area of

optogenetic

stimulation

Outcome parameter Result Future potential

research for therapy

Rats

Li et al., 2011

Callosal Sensory cortex Cerebral blood flow (optical

imaging, fMRI),

Local field potential/single

unit response

(Electrophysiology)

Optogenetic modulation reduced

transcallosal inhibition of the

contralateral sensory cortex

Peripheral injury

research

Rats

Fox et al., 2016

VTA/SN - striatal VTA/SN Dopamine release (Fast

scanning cyclic

voltammetry)

Activation of VTA/SN caused

contralateral striatal dopamine

release

Parkinson’s disease

research

Mice

Sato et al., 2016

Callosal Binocular zone of visual

cortex

Local field potential

(Electrophysiology)

Activation of callosal projections

caused contralateral visual cortex

hyperpolarization in a visual

stimuli dependent manner (high

contrast visual stimuli caused

greater hyperpolarization)

Visual cortex plasticity

research

Mice

Rock and Apicella,

2015

Callosal Callosal projections in

auditory cortex

Slice action potentials

(Electrophysiology)

Activation of callosal projections

suppress corticocortical

pyramidal neuron activity but

facilitated corticocollicular

pyramidal neurons

Auditory cortex plasticity

research, Auditory

rehabilitation

Other preclinical methods such as thermogenetic and chemogenetic methods have not been reported in the setting of interhemispheric communication. VTA, ventral tegmental area;

SN, substantia nigra.
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FIGURE 1 | Noninvasive brain stimulation and molecular-based neuromodulation techniques in human (left), monkey (middle), and rat (right). The brain of

each species is scaled at 1:1.7:4.5.

communication can be targeted using this very spatially
and temporally specific modulation technique during the
reorganization period.

Although it has not been reported, recording electrodes were
implanted in motor cortex contralateral to the side of stroke,
as well as ipsilateral somatosensory cortex and striatum in the
study by Cheng et al. (2014b). A characterization of neuronal
activity detected by recording electrodes from day 5 to 14
when stimulation took place may provide an interesting insight.
Although TMS or tDCS studies to characterize interhemispheric
interaction have been reviewed in prior sections, there are
only a few current reports on optogenetic studies describing
interhemispheric interaction (Table 2). Time dependent and
region dependent response to optogenetic stimulation for
recovery of interhemispheric communication can be explored
in these preclinical studies, as there is less limitation on testing
various protocols unlike clinical studies.With optogenetic studies
well under way at many research centers, using this technique
in various models of acquired injury and neurodegenerative
disease will give insight into optimal stimulation strategies for
recovery.

FUTURE DIRECTIONS

While optogenetics has a major impact on basic science
today, the main drawback is that light does not penetrate
the bone. Therefore, optic fibers to deliver the light must be
implanted in the target organ (i.e., brain), producing side effects
similar to implantable electronic devices. To overcome the
need to implant electrodes and optic fibers, other technologies
based on synthetic drug delivery (designer receptors exclusively
activated by designer drugs (DREADDs); Coward et al., 1998;
Zemelman et al., 2003; García-Sanz et al., 2007; Alexander
et al., 2009; Magnus et al., 2011), chemical and optical hybrids
(Berglund et al., 2013; Land et al., 2014), and magnetic
field heating (Huang et al., 2010; Stanley et al., 2012; Chen
et al., 2015), are being developed to allow cellular- and
region- specific control of cellular function. However, these
technologies require the administration of drugs (DREADDs

and chemical and optical hybrids) and tissue heating (magnetic
field heating). Therefore, the temporal specificity of these
techniques is on the orders of minutes to hours, and the
inevitable side effects generated from tissue heating remain to be

determined. Current efforts are aimed at developing magnetic-
field sensitive proteins that can facilitate neuronal function
(Qin et al., 2016; Wheeler et al., 2016). Thus, for basic science
research, the molecular based neuromodulation technologies will
have a long-term impact on studying and controlling neural
activity.

When applied to animal models, these technologies could
facilitate greater understanding of the role of interhemispheric
pathways in disease pathophysiology. Moreover, the ability to
modulate each region of the brain in a spatial and cell type
specific manner could enable scientists and clinicians to reverse
various dysfunctions in intrahemispheric and interhemispheric
communications. Additionally, the less-invasive nature of
the molecular-based neuromodulation techniques, and the
specificity they provide, make them attractive candidates
for use in future clinical settings. Although many years
of refinement of these methods and further studies on
the pathophysiology of these disease entities are needed
prior to consideration for clinical use, these techniques are
promising tools to be used for neuromodulation in the
future.

AUTHOR CONTRIBUTIONS

Both SS and GP conceptualized the manuscript, drafted the
manuscript, revised and finalized it. SS and GP agree to be
accountable for all aspects of the work in ensuring that questions
related to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

ACKNOWLEDGMENTS

This work was funded by NIH/NINDS R01NS072171. We would
like to thank Anna Schwarz for her contribution to the artwork
of Figure 1.

Frontiers in Neural Circuits | www.frontiersin.org 10 March 2017 | Volume 11 | Article 15

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Shin and Pelled Interhemispheric Neuromodulation

REFERENCES

Akamatsu, N., Fueta, Y., Endo, Y., Matsunaga, K., Uozumi, T., and Tsuji, S.

(2001). Decreased susceptibility to pentylenetetrazol-induced seizures after

low-frequency transcranial magnetic stimulation in rats. Neurosci. Lett. 310,

153–156. doi: 10.1016/S0304-3940(01)02116-4

Alexander, G. M., Rogan, S. C., Abbas, A. I., Armbruster, B. N., Pei, Y.,

Allen, J. A., et al. (2009). Remote control of neuronal activity in transgenic

mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39.

doi: 10.1016/j.neuron.2009.06.014

Alloway, K. D., Smith, J. B., Beauchemin, K. J., and Olson, M. L. (2009). Bilateral

projections from rat MI whisker cortex to the neostriatum, thalamus, and

claustrum: forebrain circuits for modulating whisking behavior. J. Comp.

Neurol. 515, 548–564. doi: 10.1002/cne.22073

Andreou, A. P., Holland, P. R., Akerman, S., Summ, O., Fredrick, J., and

Goadsby, P. J. (2016). Transcranial magnetic stimulation and potential cortical

and trigeminothalamic mechanisms in migraine. Brain 139(Pt 7), 2002–2014.

doi: 10.1093/brain/aww118

Aravanis, A. M., Wang, L. P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider,

M. B., et al. (2007). An optical neural interface: in vivo control of rodent motor

cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4,

S143–S156. doi: 10.1088/1741-2560/4/3/S02

Baek, K., Shim, W. H., Jeong, J., Radhakrishnan, H., Rosen, B. R., Boas, D.,

et al. (2016). Layer-specific interhemispheric functional connectivity in the

somatosensory cortex of rats: resting state electrophysiology and fMRI studies.

Brain Struct. Funct. 221, 2801–2815. doi: 10.1007/s00429-015-1073-0

Bagnato, S., Boccagni, C., Sant’Angelo, A., Prestandrea, C., Rizzo, S., and Galardi,

G. (2012). Patients in a vegetative state following traumatic brain injury

display a reduced intracortical modulation.Clin. Neurophysiol. 123, 1937–1941.

doi: 10.1016/j.clinph.2012.03.014

Baker, S. N., Olivier, E., and Lemon, R. N. (1995). Task-related

variation in corticospinal output evoked by transcranial magnetic

stimulation in the macaque monkey. J. Physiol. 488(Pt 3), 795–801.

doi: 10.1113/jphysiol.1995.sp021011

Banerjee, J., Sorrell, M. E., Celnik, P., and Pelled, G. (2017). Immediate effects

of repetitive magnetic stimulation on single cortical pyramidal neurons. PLoS

ONE 12:e0170528. doi: 10.1371/journal.pone.0170528

Barnes, W. L., Lee, W. H., and Peterchev, A. V. (2014). Approximating

transcranial magnetic stimulation with electric stimulation in mouse: a

simulation study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 6129–6132.

doi: 10.1109/embc.2014.6945028

Baumer, T., Bock, F., Koch, G., Lange, R., Rothwell, J. C., Siebner, H. R., et al.

(2006). Magnetic stimulation of human premotor or motor cortex produces

interhemispheric facilitation through distinct pathways. J. Physiol. 572(Pt 3),

857–868. doi: 10.1113/jphysiol.2006.104901

Benninger, D. H., Berman, B. D., Houdayer, E., Pal, N., Luckenbaugh, D. A.,

Schneider, L., et al. (2012). Intermittent theta-burst transcranial magnetic

stimulation for treatment of Parkinson disease. Neurology 76, 601–609.

doi: 10.1212/WNL.0b013e31820ce6bb

Benninger, D. H., Iseki, K., Kranick, S., Luckenbaugh, D. A., Houdayer, E., and

Hallett, M. (2011). Controlled study of 50-Hz repetitive transcranial magnetic

stimulation for the treatment of Parkinson disease.Neurorehabil. Neural Repair

26, 1096–1105. doi: 10.1177/1545968312445636

Berglund, K., Birkner, E., Augustine, G. J., and Hochgeschwender, U. (2013).

Light-emitting channelrhodopsins for combined optogenetic and chemical-

genetic control of neurons. PLoS ONE 8:e59759. doi: 10.1371/journal.pone.00

59759

Bocci, T., Hensghens, M. J., Di Rollo, A., Parenti, L., Barloscio, D., Rossi, S., et al.

(2016). Impaired interhemispheric processing in early Huntington’s Disease: a

transcranial magnetic stimulation study. Clin. Neurophysiol. 127, 1750–1752.

doi: 10.1016/j.clinph.2015.10.036

Bogen, J. E., Fisher, E. D., and Vogel, P. J. (1965). Cerebral

commissurotomy. A second case report. JAMA 194, 1328–1329.

doi: 10.1001/jama.1965.03090250062026

Boggio, P. S., Nunes, A., Rigonatti, S. P., Nitsche, M. A., Pascual-Leone, A., and

Fregni, F. (2007). Repeated sessions of noninvasive brain DC stimulation is

associated with motor function improvement in stroke patients. Restor. Neurol.

Neurosci. 25, 123–129.

Bologna, M., Caronni, A., Berardelli, A., and Rothwell, J. C. (2012). Practice-

related reduction of electromyographic mirroring activity depends on basal

levels of interhemispheric inhibition. Eur. J. Neurosci. 36, 3749–3757.

doi: 10.1111/ejn.12009

Boly, M., Tshibanda, L., Vanhaudenhuyse, A., Noirhomme, Q., Schnakers, C.,

Ledoux, D., et al. (2009). Functional connectivity in the default network during

resting state is preserved in a vegetative but not in a brain dead patient. Hum.

Brain Mapp. 30, 2393–2400. doi: 10.1002/hbm.20672

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005).

Millisecond-timescale, genetically targeted optical control of neural activity.

Nat. Neurosci. 8, 1263–1268. doi: 10.1038/nn1525

Brown, J. A., Lutsep, H. L., Weinand, M., and Cramer, S. C. (2006).

Motor cortex stimulation for the enhancement of recovery from stroke:

a prospective, multicenter safety study. Neurosurgery 58, 464–473.

doi: 10.1227/01.NEU.0000197100.63931.04

Buchkremer-Ratzmann, I., August, M., Hagemann, G., and Witte, O.

W. (1996). Electrophysiological transcortical diaschisis after cortical

photothrombosis in rat brain. Stroke 27, 1105–1109; discussion 1109–1111.

doi: 10.1161/01.str.27.6.1105

Bütefisch, C. M., Wessling, M., Netz, J., Seitz, R. J., and Hömberg, V.

(2008). Relationship between interhemispheric inhibition and motor cortex

excitability in subacute stroke patients. Neurorehabil. Neural Repair 22, 4–21.

doi: 10.1177/1545968307301769

Castillo Saavedra, L., Morales-Quezada, L., Doruk, D., Rozinsky, J., Coutinho,

L., Faria, P., et al. (2014). QEEG indexed frontal connectivity effects of

transcranial pulsed current stimulation (tPCS): a sham-controlled mechanistic

trial. Neurosci. Lett. 577, 61–65. doi: 10.1016/j.neulet.2014.06.021

Celnik, P., Paik, N. J., Vandermeeren, Y., Dimyan, M., and Cohen, L. G. (2009).

Effects of combined peripheral nerve stimulation and brain polarization

on performance of a motor sequence task after chronic stroke. Stroke 40,

1764–1771. doi: 10.1161/STROKEAHA.108.540500

Cendes, F., Ragazzo, P. C., da Costa, V., and Martins, L. F. (1993).

Corpus callosotomy in treatment of medically resistant epilepsy:

preliminary results in a pediatric population. Epilepsia 34, 910–917.

doi: 10.1111/j.1528-1157.1993.tb02111.x

Chen, R., Romero, G., Christiansen, M. G., Mohr, A., and Anikeeva, P. (2015).

Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480.

doi: 10.1126/science.1261821

Cheng, M. Y., Aswendt, M., and Steinberg, G. K. (2016). Optogenetic approaches

to target specific neural circuits in post-stroke recovery. Neurotherapeutics 13,

325–340. doi: 10.1007/s13311-015-0411-5

Cheng, M. Y., Wang, E. H., and Steinberg, G. K. (2014a). Optogenetic

approaches to study stroke recovery. ACS Chem. Neurosci. 5, 1144–1145.

doi: 10.1021/cn500216f

Cheng, M. Y., Wang, E. H., Woodson, W. J., Wang, S., Sun, G., Lee, A.

G., et al. (2014b). Optogenetic neuronal stimulation promotes functional

recovery after stroke. Proc. Natl. Acad. Sci. U.S.A. 111, 12913–12918.

doi: 10.1073/pnas.1404109111

Chistyakov, A. V., Soustiel, J. F., Hafner, H., Trubnik, M., Levy, G., and Feinsod,

M. (2001). Excitatory and inhibitory corticospinal responses to transcranial

magnetic stimulation in patients with minor to moderate head injury. J. Neurol.

Neurosurg. Psychiatr. 70, 580–587. doi: 10.1136/jnnp.70.5.580

Coward, P., Wada, H. G., Falk, M. S., Chan, S. D., Meng, F., Akil, H.,

et al. (1998). Controlling signaling with a specifically designed Gi-coupled

receptor. Proc. Natl. Acad. Sci. U.S.A. 95, 352–357. doi: 10.1073/pnas.95.

1.352

Deisseroth, K., Feng, G., Majewska, A. K., Miesenböck, G., Ting, A.,

and Schnitzer, M. J. (2006). Next-generation optical technologies for

illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386.

doi: 10.1523/JNEUROSCI.3863-06.2006

Demirtas-Tatlidede, A., Alonso-Alonso, M., Shetty, R. P., Ronen, I., Pascual-Leone,

A., and Fregni, F. (2015). Long-term effects of contralesional rTMS in severe

stroke: safety, cortical excitability, and relationship with transcallosal motor

fibers. NeuroRehabilitation 36, 51–59. doi: 10.3233/NRE-141191

Dennis, E. L., Ellis, M. U., Marion, S. D., Jin, Y., Moran, L., Olsen,

A., et al. (2015). Callosal function in pediatric traumatic brain injury

linked to disrupted white matter integrity. J. Neurosci. 35, 10202–10211.

doi: 10.1523/JNEUROSCI.1595-15.2015

Frontiers in Neural Circuits | www.frontiersin.org 11 March 2017 | Volume 11 | Article 15

https://doi.org/10.1016/S0304-3940(01)02116-4
https://doi.org/10.1016/j.neuron.2009.06.014
https://doi.org/10.1002/cne.22073
https://doi.org/10.1093/brain/aww118
https://doi.org/10.1088/1741-2560/4/3/S02
https://doi.org/10.1007/s00429-015-1073-0
https://doi.org/10.1016/j.clinph.2012.03.014
https://doi.org/10.1113/jphysiol.1995.sp021011
https://doi.org/10.1371/journal.pone.0170528
https://doi.org/10.1109/embc.2014.6945028
https://doi.org/10.1113/jphysiol.2006.104901
https://doi.org/10.1212/WNL.0b013e31820ce6bb
https://doi.org/10.1177/1545968312445636
https://doi.org/10.1371/journal.pone.0059759
https://doi.org/10.1016/j.clinph.2015.10.036
https://doi.org/10.1001/jama.1965.03090250062026
https://doi.org/10.1111/ejn.12009
https://doi.org/10.1002/hbm.20672
https://doi.org/10.1038/nn1525
https://doi.org/10.1227/01.NEU.0000197100.63931.04
https://doi.org/10.1161/01.str.27.6.1105
https://doi.org/10.1177/1545968307301769
https://doi.org/10.1016/j.neulet.2014.06.021
https://doi.org/10.1161/STROKEAHA.108.540500
https://doi.org/10.1111/j.1528-1157.1993.tb02111.x
https://doi.org/10.1126/science.1261821
https://doi.org/10.1007/s13311-015-0411-5
https://doi.org/10.1021/cn500216f
https://doi.org/10.1073/pnas.1404109111
https://doi.org/10.1136/jnnp.70.5.580
https://doi.org/10.1073/pnas.95.1.352
https://doi.org/10.1523/JNEUROSCI.3863-06.2006
https://doi.org/10.3233/NRE-141191
https://doi.org/10.1523/JNEUROSCI.1595-15.2015
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Shin and Pelled Interhemispheric Neuromodulation

Di Lazzaro, V., Dileone, M., Capone, F., Pellegrino, G., Ranieri, F., Musumeci, G.,

et al. (2014). Immediate and latemodulation of interhemipheric imbalance with

bilateral transcranial direct current stimulation in acute stroke. Brain Stimul. 7,

841–848. doi: 10.1016/j.brs.2014.10.001

Douglas, R., Kellaway, L., Mintz, M., and van Wageningen, G. (1987). The crossed

nigrostriatal projection decussates in the ventral tegmental decussation. Brain

Res. 418, 111–121. doi: 10.1016/0006-8993(87)90967-X

Duque, J., Hummel, F., Celnik, P., Murase, N., Mazzocchio, R., and Cohen, L. G.

(2005). Transcallosal inhibition in chronic subcortical stroke. Neuroimage 28,

940–946. doi: 10.1016/j.neuroimage.2005.06.033

Ellis,M. U., DeBoardMarion, S.,McArthur, D. L., Babikian, T., Giza, C., Kernan, C.

L., et al. (2016). TheUCLA study of children withmoderate-to-severe traumatic

brain injury: event-related potential measure of interhemispheric transfer time.

J. Neurotrauma 33, 990–996. doi: 10.1089/neu.2015.4023

Emara, T. H., Moustafa, R. R., Elnahas, N. M., Elganzoury, A. M., Abdo,

T. A., Mohamed, S. A., et al. (2010). Repetitive transcranial magnetic

stimulation at 1Hz and 5Hz produces sustained improvement in motor

function and disability after ischaemic stroke. Eur. J. Neurol. 17, 1203–1209.

doi: 10.1111/j.1468-1331.2010.03000.x

Fabri, M., Polonara, G., Mascioli, G., Salvolini, U., and Manzoni, T. (2011).

Topographical organization of human corpus callosum: an fMRI mapping

study. Brain Res. 1370, 99–111. doi: 10.1016/j.brainres.2010.11.039

Falchook, A. D., Porges, E. C., Nadeau, S. E., Leon, S. A., Williamson, J. B., and

Heilman, K. M. (2015). Cognitive-motor dysfunction after severe traumatic

brain injury: a cerebral interhemispheric disconnection syndrome. J. Clin. Exp.

Neuropsychol. 37, 1062–1073. doi: 10.1080/13803395.2015.1077930

Fecteau, S., Dickler, M., Pelayo, R., Kumru, H., Bernabeu, M., Opisso Salleras,

E., et al. (2015). Cortical excitability during passive action observation

in hospitalized adults with subacute moderate to severe traumatic brain

injury: a preliminary TMS study. Neurorehabil. Neural Repair 29, 548–556.

doi: 10.1177/1545968314558603

Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G., and Marsden, C.

D. (1992). Interhemispheric inhibition of the human motor cortex. J. Physiol.

453, 525–546. doi: 10.1113/jphysiol.1992.sp019243

Fisher, R. S., Boylan, M. K., Hull, C. D., Buchwald, N. A., and Levine, M.

S. (1986). Branched projections of cat sensorimotor cortex: multiple

retrograde labeling via commissural corticocortical, decussated corticostriatal

and undecussated corticostriatal axons. Brain Res. 384, 395–400.

doi: 10.1016/0006-8993(86)91180-7

Fitzgerald, P. B., Hoy, K. E., Maller, J. J., Herring, S., Segrave, R.,

McQueen, S., et al. (2011). Transcranial magnetic stimulation for

depression after a traumatic brain injury: a case study. J. ECT 27, 38–40.

doi: 10.1097/YCT.0b013e3181eb30c6

Fox, M. E., Mikhailova, M. A., Bass, C. E., Takmakov, P., Gainetdinov, R.

R., Budygin, E. A., et al. (2016). Cross-hemispheric dopamine projections

have functional significance. Proc. Natl. Acad. Sci. U.S.A. 113, 6985–6990.

doi: 10.1073/pnas.1603629113

Fuiks, K. S., Wyler, A. R., Hermann, B. P., and Somes, G. (1991). Seizure outcome

from anterior and complete corpus callosotomy. J. Neurosurg. 74, 573–578.

doi: 10.3171/jns.1991.74.4.0573

Funnell, M. G., Corballis, P. M., and Gazzaniga, M. S. (2000). Insights into the

functional specificity of the human corpus callosum. Brain 123(Pt 5), 920–926.

doi: 10.1093/brain/123.5.920

García-Sanz, N., Valente, P., Gomis, A., Fernández-Carvajal, A., Fernández-

Ballester, G., Viana, F., et al. (2007). A role of the transient receptor potential

domain of vanilloid receptor I in channel gating. J. Neurosci. 27, 11641–11650.

doi: 10.1523/JNEUROSCI.2457-07.2007

Gersner, R., Kravetz, E., Feil, J., Pell, G., and Zangen, A. (2011). Long-term effects

of repetitive transcranial magnetic stimulation on markers for neuroplasticity:

differential outcomes in anesthetized and awake animals. J. Neurosci. 31,

7521–7526. doi: 10.1523/JNEUROSCI.6751-10.2011

Grefkes, C., Nowak, D. A., Eickhoff, S. B., Dafotakis, M., Küst, J., Karbe, H., et al.

(2008). Cortical connectivity after subcortical stroke assessed with functional

magnetic resonance imaging. Ann. Neurol. 63, 236–246. doi: 10.1002/ana.

21228

Guggenmos, D. J., Azin, M., Barbay, S., Mahnken, J. D., Dunham, C.,

Mohseni, P., et al. (2014). Restoration of function after brain damage

using a neural prosthesis. Proc. Natl. Acad. Sci. U.S.A. 110, 21177–21182.

doi: 10.1073/pnas.1316885110

Han, Y., Li, N., Zeiler, S. R., and Pelled, G. (2013). Peripheral nerve injury induces

immediate increases in layer v neuronal activity. Neurorehabil. Neural Repair

27, 664–672. doi: 10.1177/1545968313484811

Hanajima, R., Ugawa, Y., Machii, K., Mochizuki, H., Terao, Y., Enomoto, H., et al.

(2001). Interhemispheric facilitation of the hand motor area in humans. J.

Physiol. 531(Pt 3), 849–859. doi: 10.1111/j.1469-7793.2001.0849h.x

Hohlefeld, F. U., Huchzermeyer, C., Huebl, J., Schneider, G. H., Brücke, C.,

Schönecker, T., et al. (2014). Interhemispheric functional interactions between

the subthalamic nuclei of patients with Parkinson’s disease. Eur. J. Neurosci. 40,

3273–3283. doi: 10.1111/ejn.12686

Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M., and Pralle, A. (2010). Remote

control of ion channels and neurons through magnetic-field heating of

nanoparticles. Nat. Nanotechnol. 5, 602–606. doi: 10.1038/nnano.2010.125

Imig, T. J., and Reale, R. A. (1980). Patterns of cortico-cortical connections related

to tonotopic maps in cat auditory cortex. J. Comp. Neurol. 192, 293–332.

doi: 10.1002/cne.901920208

Iraji, A., Benson, R. R., Welch, R. D., O’Neil, B. J., Woodard, J. L., Ayaz, S. I.,

et al. (2015). Resting state functional connectivity in mild traumatic brain

injury at the acute stage: independent component and seed-based analyses. J.

Neurotrauma 32, 1031–1045. doi: 10.1089/neu.2014.3610

Kang, E. K., Kim, D. Y., and Paik, N. J. (2012). Transcranial direct current

stimulation of the left prefrontal cortex improves attention in patients

with traumatic brain injury: a pilot study. J. Rehabil. Med. 44, 346–350.

doi: 10.2340/16501977-0947

Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Taylor Tavares,

J. V., Carpenter, T. A., et al. (2010). Altered functional connectivity in

the motor network after traumatic brain injury. Neurology 75, 168–176.

doi: 10.1212/WNL.0b013e3181e7ca58

Kaski, D., Dominguez, R. O., Allum, J. H., Islam, A. F., and Bronstein, A.M. (2010).

Combining physical training with transcranial direct current stimulation to

improve gait in Parkinson’s disease: a pilot randomized controlled study. Clin.

Rehabil. 28, 1115–1124. doi: 10.1177/0269215514534277

Kessler, S. K., Minhas, P., Woods, A. J., Rosen, A., Gorman, C., and

Bikson, M. (2013). Dosage considerations for transcranial direct current

stimulation in children: a computational modeling study. PLoS ONE 8:e76112.

doi: 10.1371/journal.pone.0076112

Khedr, E. M., Abdel-Fadeil, M. R., Farghali, A., and Qaid, M. (2009). Role

of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor

function recovery after acute ischaemic stroke. Eur. J. Neurol. 16, 1323–1330.

doi: 10.1111/j.1468-1331.2009.02746.x

Khedr, E. M., Abo El-Fetoh, N., Ali, A. M., El-Hammady, D. H., Khalifa, H., Atta,

H., et al. (2014). Dual-hemisphere repetitive transcranial magnetic stimulation

for rehabilitation of poststroke aphasia: a randomized, double-blind clinical

trial.Neurorehabil. Neural Repair 28, 740–750. doi: 10.1177/1545968314521009

Killackey, H. P., Gould, H. J. III, Cusick, C. G., Pons, T. P., and Kaas, J. H. (1983).

The relation of corpus callosum connections to architectonic fields and body

surface maps in sensorimotor cortex of new and old world monkeys. J. Comp.

Neurol. 219, 384–419. doi: 10.1002/cne.902190403

Kingstone, A., and Gazzaniga, M. S. (1995). Subcortical transfer of higher-

order information: more illusory than real? Neuropsychologia 9, 321–328.

doi: 10.1037/0894-4105.9.3.321

Kinoshita, M., Ikeda, A., Begum, T., Yamamoto, J., Hitomi, T., and Shibasaki, H.

(2005). Low-frequency repetitive transcranial magnetic stimulation for seizure

suppression in patients with extratemporal lobe epilepsy-a pilot study. Seizure

14, 387–392. doi: 10.1016/j.seizure.2005.05.002

Kirton, A., Deveber, G., Gunraj, C., and Chen, R. (2010). Cortical excitability

and interhemispheric inhibition after subcortical pediatric stroke: plastic

organization and effects of rTMS. Clin. Neurophysiol. 121, 1922–1929.

doi: 10.1016/j.clinph.2010.04.021

Koch, G., Brusa, L., Caltagirone, C., Peppe, A., Oliveri, M., Stanzione, P.,

et al. (2005). rTMS of supplementary motor area modulates therapy-

induced dyskinesias in Parkinson disease. Neurology 65, 623–625.

doi: 10.1212/01.wnl.0000172861.36430.95

Koch, G., Brusa, L., Carrillo, F., Lo Gerfo, E., Torriero, S., Oliveri,

M., et al. (2009). Cerebellar magnetic stimulation decreases

Frontiers in Neural Circuits | www.frontiersin.org 12 March 2017 | Volume 11 | Article 15

https://doi.org/10.1016/j.brs.2014.10.001
https://doi.org/10.1016/0006-8993(87)90967-X
https://doi.org/10.1016/j.neuroimage.2005.06.033
https://doi.org/10.1089/neu.2015.4023
https://doi.org/10.1111/j.1468-1331.2010.03000.x
https://doi.org/10.1016/j.brainres.2010.11.039
https://doi.org/10.1080/13803395.2015.1077930
https://doi.org/10.1177/1545968314558603
https://doi.org/10.1113/jphysiol.1992.sp019243
https://doi.org/10.1016/0006-8993(86)91180-7
https://doi.org/10.1097/YCT.0b013e3181eb30c6
https://doi.org/10.1073/pnas.1603629113
https://doi.org/10.3171/jns.1991.74.4.0573
https://doi.org/10.1093/brain/123.5.920
https://doi.org/10.1523/JNEUROSCI.2457-07.2007
https://doi.org/10.1523/JNEUROSCI.6751-10.2011
https://doi.org/10.1002/ana.21228
https://doi.org/10.1073/pnas.1316885110
https://doi.org/10.1177/1545968313484811
https://doi.org/10.1111/j.1469-7793.2001.0849h.x
https://doi.org/10.1111/ejn.12686
https://doi.org/10.1038/nnano.2010.125
https://doi.org/10.1002/cne.901920208
https://doi.org/10.1089/neu.2014.3610
https://doi.org/10.2340/16501977-0947
https://doi.org/10.1212/WNL.0b013e3181e7ca58
https://doi.org/10.1177/0269215514534277
https://doi.org/10.1371/journal.pone.0076112
https://doi.org/10.1111/j.1468-1331.2009.02746.x
https://doi.org/10.1177/1545968314521009
https://doi.org/10.1002/cne.902190403
https://doi.org/10.1037/0894-4105.9.3.321
https://doi.org/10.1016/j.seizure.2005.05.002
https://doi.org/10.1016/j.clinph.2010.04.021
https://doi.org/10.1212/01.wnl.0000172861.36430.95
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Shin and Pelled Interhemispheric Neuromodulation

levodopa-induced dyskinesias in Parkinson disease. Neurology 73, 113–119.

doi: 10.1212/WNL.0b013e3181ad5387

Koski, L., Kolivakis, T., Yu, C., Chen, J. K., Delaney, S., and Ptito, A. (2015).

Noninvasive brain stimulation for persistent postconcussion symptoms in mild

traumatic brain injury. J. Neurotrauma 32, 38–44. doi: 10.1089/neu.2014.3449

Lakhan, S. E., and Callaway, E. (2010). Deep brain stimulation for obsessive-

compulsive disorder and treatment-resistant depression: systematic review.

BMC Res. Notes 3:60. doi: 10.1186/1756-0500-3-60

Land, B. B., Brayton, C. E., Furman, K. E., Lapalombara, Z., and Dileone, R. J.

(2014). Optogenetic inhibition of neurons by internal light production. Front.

Behav. Neurosci. 8:108. doi: 10.3389/fnbeh.2014.00108

Läppchen, C. H., Feil, B., Fauser, S., Glocker, F. X., and Schulze-Bonhage, A. (2011).

Changes in interhemispheric inhibition following successful epilepsy surgery: a

TMS study. J. Neurol. 258, 68–73. doi: 10.1007/s00415-010-5683-4

Lee, J. Y., Kim, S. H., Ko, A. R., Lee, J. S., Yu, J. H., Seo, J. H., et al.

(2013). Therapeutic effects of repetitive transcranial magnetic stimulation

in an animal model of Parkinson’s disease. Brain Res. 1537, 290–302.

doi: 10.1016/j.brainres.2013.08.051

Lee, W. H., Lisanby, S. H., Laine, A. F., and Peterchev, A. V. (2015). Electric

field model of transcranial electric stimulation in nonhuman primates:

correspondence to individual motor threshold. IEEE Trans. Biomed. Eng. 62,

2095–2105. doi: 10.1109/TBME.2015.2425406

Levy, R., Ruland, S., Weinand, M., Lowry, D., Dafer, R., and Bakay, R. (2008).

Cortical stimulation for the rehabilitation of patients with hemiparetic stroke:

a multicenter feasibility study of safety and efficacy. J. Neurosurg. 108, 707–714.

doi: 10.3171/JNS/2008/108/4/0707

Li, N., Downey, J. E., Bar-Shir, A., Gilad, A. A., Walczak, P., Kim, H., et al. (2011).

Optogenetic-guided cortical plasticity after nerve injury. Proc. Natl. Acad. Sci.

U.S.A. 108, 8838–8843. doi: 10.1073/pnas.1100815108

Li, N., Yang, Y., Glover, D. P., Zhang, J., Saraswati, M., Robertson, C., et al. (2014).

Evidence for impaired plasticity after traumatic brain injury in the developing

brain. J. Neurotrauma 31, 395–403. doi: 10.1089/neu.2013.3059

Li, X., Gutierrez, D. V., Hanson, M. G., Han, J., Mark, M. D., Chiel, H., et al. (2005).

Fast noninvasive activation and inhibition of neural and network activity by

vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci.

U.S.A. 102, 17816–17821. doi: 10.1073/pnas.0509030102

Liepert, J., Hamzei, F., and Weiller, C. (2000). Motor cortex disinhibition of

the unaffected hemisphere after acute stroke. Muscle Nerve 23, 1761–1763.

doi: 10.1002/1097-4598(200011)23:11&lt;1761::AID-MUS14&gt;3.0.CO;2-M

Lim, D. H., LeDue, J. M., Mohajerani, M. H., and Murphy, T. H. (2014).

Optogenetic mapping after stroke reveals network-wide scaling of functional

connections and heterogeneous recovery of the peri-infarct. J. Neurosci. 34,

16455–16466. doi: 10.1523/JNEUROSCI.3384-14.2014

Lin, C. Y., Li, K., Franic, L., Gonzalez-Martinez, J., Lin, V. W., Najm, I., et al.

(2014). Frequency-dependent effects of contralateral repetitive transcranial

magnetic stimulation on penicillin-induced seizures. Brain Res. 1581, 103–116.

doi: 10.1016/j.brainres.2014.06.006

Lin, H. C., Pan, H. C., Lin, S. H., Lo, Y. C., Shen, E. T., Liao, L. D.,

et al. (2015). Central thalamic deep-brain stimulation alters striatal-thalamic

connectivity in cognitive neural behavior. Front. Neural Circuits 9:87.

doi: 10.3389/fncir.2015.00087

Liu, A., Pang, T., Herman, S., Pascual-Leone, A., and Rotenberg, A. (2013).

Transcranial magnetic stimulation for refractory focal status epilepticus in the

intensive care unit. Seizure 22, 893–896. doi: 10.1016/j.seizure.2013.06.014

Liu, J., Qin, W., Zhang, J., Zhang, X., and Yu, C. (2015). Enhanced

interhemispheric functional connectivity compensates for anatomical

connection damages in subcortical stroke. Stroke 46, 1045–1051.

doi: 10.1161/STROKEAHA.114.007044

Ljungqvist, J., Nilsson, D., Ljungberg, M., Sörbo, A., Esbjörnsson, E., Eriksson-

Ritzen, C., et al. (2011). Longitudinal study of the diffusion tensor imaging

properties of the corpus callosum in acute and chronic diffuse axonal injury.

Brain Inj. 25, 370–378. doi: 10.3109/02699052.2011.558038

Louise-Bender Pape, T., Rosenow, J., Lewis, G., Ahmed, G., Walker, M.,

Guernon, A., et al. (2009). Repetitive transcranial magnetic stimulation-

associated neurobehavioral gains during coma recovery. Brain Stimul. 2, 22–35.

doi: 10.1016/j.brs.2008.09.004

Lu, H., Kobilo, T., Robertson, C., Tong, S., Celnik, P., and Pelled, G.

(2015). Transcranial magnetic stimulation facilitates neurorehabilitation

after pediatric traumatic brain injury. Sci. Rep. 5:14769. doi: 10.1038/srep

14769

Luo, C., Guo, X., Song, W., Zhao, B., Cao, B., Yang, J., et al. (2015). Decreased

resting-state interhemispheric functional connectivity in Parkinson’s Disease.

Biomed. Res. Int. 2015, 692684. doi: 10.1155/2015/692684

Magnus, C. J., Lee, P. H., Atasoy, D., Su, H. H., Looger, L. L., and Sternson, S.

M. (2011). Chemical and genetic engineering of selective ion channel-ligand

interactions. Science 333, 1292–1296. doi: 10.1126/science.1206606

Manenti, R., Brambilla, M., Rosini, S., Orizio, I., Ferrari, C., Borroni, B., et al.

(2014). Time up and go task performance improves after transcranial direct

current stimulation in patient affected by Parkinson’s disease. Neurosci. Lett.

580, 74–77. doi: 10.1016/j.neulet.2014.07.052

Margulies, D. S., Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos,

F. X., and Milham, M. P. (2007). Mapping the functional

connectivity of anterior cingulate cortex. Neuroimage 37, 579–588.

doi: 10.1016/j.neuroimage.2007.05.019

Marquez de la Plata, C. D., Garces, J., Shokri Kojori, E., Grinnan, J., Krishnan,

K., Pidikiti, R., et al. (2011). Deficits in functional connectivity of hippocampal

and frontal lobe circuits after traumatic axonal injury. Arch. Neurol. 68, 74–84.

doi: 10.1001/archneurol.2010.342

Matthews, D., Murtagh, P., Risso, A., Jones, G., and Alexander, C. M. (2013). Does

interhemispheric communication relate to the bilateral function of muscles?

A study of scapulothoracic muscles using transcranial magnetic stimulation. J.

Electromyogr. Kinesiol. 23, 1370–1374. doi: 10.1016/j.jelekin.2013.06.007

Meinzer, M., Darkow, R., Lindenberg, R., and Flöel, A. (2016). Electrical

stimulation of the motor cortex enhances treatment outcome in post-stroke

aphasia. Brain 139(Pt 4), 1152–1163. doi: 10.1093/brain/aww002

Mello, E. A., Cohen, L. G., Monteiro Dos Anjos, S., Conti, J., Andrade, K. N.,

Tovar Moll, F., et al. (2015). Increase in short-interval intracortical facilitation

of the motor cortex after low-frequency repetitive magnetic stimulation of

the unaffected hemisphere in the subacute phase after stroke. Neural Plast.

2015:407320. doi: 10.1155/2015/407320

Menkes, D. L., and Gruenthal, M. (2000). Slow-frequency repetitive transcranial

magnetic stimulation in a patient with focal cortical dysplasia. Epilepsia 41,

240–242. doi: 10.1111/j.1528-1157.2000.tb00146.x

Meyer, B. U., Röricht, S., Gräfin von Einsiedel, H., Kruggel, F., and Weindl, A.

(1995). Inhibitory and excitatory interhemispheric transfers between motor

cortical areas in normal humans and patients with abnormalities of the corpus

callosum. Brain 118(Pt 2), 429–440. doi: 10.1093/brain/118.2.429

Meyer, B. U., Röricht, S., and Woiciechowsky, C. (1998). Topography of fibers in

the human corpus callosummediating interhemispheric inhibition between the

motor cortices. Ann. Neurol. 43, 360–369. doi: 10.1002/ana.410430314

Minhas, P., Bikson, M., Woods, A. J., Rosen, A. R., and Kessler, S. K. (2012).

Transcranial direct current stimulation in pediatric brain: a computational

modeling study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 859–862.

doi: 10.1109/embc.2012.6346067

Miró, J., Gurtubay-Antolin, A., Ripollés, P., Sierpowska, J., Juncadella, M.,

Fuentemilla, L., et al. (2015). Interhemispheric microstructural connectivity

in bitemporal lobe epilepsy with hippocampal sclerosis. Cortex 67, 106–121.

doi: 10.1016/j.cortex.2015.03.018

Monai, H., Ohkura, M., Tanaka, M., Oe, Y., Konno, A., Hirai, H., et al.

(2016). Calcium imaging reveals glial involvement in transcranial direct

current stimulation-induced plasticity in mouse brain. Nat. Commun. 7:11100.

doi: 10.1038/ncomms11100

Moosavi, S. H., Ellaway, P. H., Catley, M., Stokes, M. J., and Haque, N.

(1999). Corticospinal function in severe brain injury assessed using magnetic

stimulation of the motor cortex in man. J. Neurol. Sci. 164, 179–186.

doi: 10.1016/S0022-510X(99)00065-9

Morales-Quezada, L., Saavedra, L. C., Rozisky, J., Hadlington, L., and Fregni, F.

(2014). Intensity-dependent effects of transcranial pulsed current stimulation

on interhemispheric connectivity: a high-resolution qEEG, sham-controlled

study. Neuroreport 25, 1054–1058. doi: 10.1097/WNR.0000000000000228

Morgan, S., and Huston, J. P. (1990). The interhemispheric projection

from the substantia nigra to the caudate-putamen as depicted by the

anterograde transport of [3H]leucine. Behav. Brain Res. 38, 155–162.

doi: 10.1016/0166-4328(90)90013-5

Mueller, J. K., Grigsby, E. M., Prevosto, V., Petraglia, F. W. III, Rao, H.,

Deng, Z. D., et al. (2014). Simultaneous transcranial magnetic stimulation

Frontiers in Neural Circuits | www.frontiersin.org 13 March 2017 | Volume 11 | Article 15

https://doi.org/10.1212/WNL.0b013e3181ad5387
https://doi.org/10.1089/neu.2014.3449
https://doi.org/10.1186/1756-0500-3-60
https://doi.org/10.3389/fnbeh.2014.00108
https://doi.org/10.1007/s00415-010-5683-4
https://doi.org/10.1016/j.brainres.2013.08.051
https://doi.org/10.1109/TBME.2015.2425406
https://doi.org/10.3171/JNS/2008/108/4/0707
https://doi.org/10.1073/pnas.1100815108
https://doi.org/10.1089/neu.2013.3059
https://doi.org/10.1073/pnas.0509030102
https://doi.org/10.1002/1097-4598(200011)23:11&lt;1761::AID-MUS14&gt;3.0.CO;2-M
https://doi.org/10.1523/JNEUROSCI.3384-14.2014
https://doi.org/10.1016/j.brainres.2014.06.006
https://doi.org/10.3389/fncir.2015.00087
https://doi.org/10.1016/j.seizure.2013.06.014
https://doi.org/10.1161/STROKEAHA.114.007044
https://doi.org/10.3109/02699052.2011.558038
https://doi.org/10.1016/j.brs.2008.09.004
https://doi.org/10.1038/srep14769
https://doi.org/10.1155/2015/692684
https://doi.org/10.1126/science.1206606
https://doi.org/10.1016/j.neulet.2014.07.052
https://doi.org/10.1016/j.neuroimage.2007.05.019
https://doi.org/10.1001/archneurol.2010.342
https://doi.org/10.1016/j.jelekin.2013.06.007
https://doi.org/10.1093/brain/aww002
https://doi.org/10.1155/2015/407320
https://doi.org/10.1111/j.1528-1157.2000.tb00146.x
https://doi.org/10.1093/brain/118.2.429
https://doi.org/10.1002/ana.410430314
https://doi.org/10.1109/embc.2012.6346067
https://doi.org/10.1016/j.cortex.2015.03.018
https://doi.org/10.1038/ncomms11100
https://doi.org/10.1016/S0022-510X(99)00065-9
https://doi.org/10.1097/WNR.0000000000000228
https://doi.org/10.1016/0166-4328(90)90013-5
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Shin and Pelled Interhemispheric Neuromodulation

and single-neuron recording in alert non-human primates. Nat. Neurosci. 17,

1130–1136. doi: 10.1038/nn.3751

Murase, N., Duque, J., Mazzocchio, R., and Cohen, L. G. (2004). Influence

of interhemispheric interactions on motor function in chronic stroke. Ann.

Neurol. 55, 400–409. doi: 10.1002/ana.10848

Nakamura, H., Chaumon, M., Klijn, F., and Innocenti, G. M. (2008). Dynamic

properties of the representation of the visual field midline in the visual areas

17 and 18 of the ferret (Mustela putorius). Cereb. Cortex 18, 1941–1950.

doi: 10.1093/cercor/bhm221

Noh, N. A., Fuggetta, G., and Manganotti, P. (2015). Theta-burst transcranial

magnetic stimulation alters the functional topography of the cortical motor

network.Malays. J. Med. Sci. 22(Spec Issue), 36–44.

Noh, N. A., Fuggetta, G., Manganotti, P., and Fiaschi, A. (2012). Long lasting

modulation of cortical oscillations after continuous theta burst transcranial

magnetic stimulation. PLoS ONE 7:e35080. doi: 10.1371/journal.pone.0035080

Notturno, F., Pace, M., Zappasodi, F., Cam, E., Bassetti, C. L., and

Uncini, A. (2014). Neuroprotective effect of cathodal transcranial direct

current stimulation in a rat stroke model. J. Neurol. Sci. 342, 146–151.

doi: 10.1016/j.jns.2014.05.017

Novak, P., Klemp, J. A., Ridings, L. W., Lyons, K. E., Pahwa, R., and Nazzaro, J.

M. (2009). Effect of deep brain stimulation of the subthalamic nucleus upon

the contralateral subthalamic nucleus in Parkinson disease. Neurosci. Lett. 463,

12–16. doi: 10.1016/j.neulet.2009.07.040

Park, E., Kim, Y. H., Chang, W. H., Kwon, T. G., and Shin, Y. I.

(2014). Interhemispheric modulation of dual-mode, noninvasive brain

stimulation on motor function. Ann. Rehabil. Med. 38, 297–303.

doi: 10.5535/arm.2014.38.3.297

Paulus, W. (2005). Toward establishing a therapeutic window for rTMS by theta

burst stimulation. Neuron 45, 181–183. doi: 10.1016/j.neuron.2005.01.008

Pawela, C. P., Biswal, B. B., Hudetz, A. G., Li, R., Jones, S. R., Cho, Y. R.,

et al. (2010). Interhemispheric neuroplasticity following limb deafferentation

detected by resting-state functional connectivity magnetic resonance imaging

(fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage 49,

2467–2478. doi: 10.1016/j.neuroimage.2009.09.054

Pelled, G., Bergman, H., Ben-Hur, T., and Goelman, G. (2005). Reduced basal

activity and increased functional homogeneity in sensorimotor and striatum

of a Parkinson’s disease rat model: a functional MRI study. Eur. J. Neurosci. 21,

2227–2232. doi: 10.1111/j.1460-9568.2005.04035.x

Pelled, G., Bergman, H., Ben-Hur, T., and Goelman, G. (2007a). Manganese-

enhanced MRI in a rat model of Parkinson’s disease. J. Magn. Reson. Imaging

26, 863–870. doi: 10.1002/jmri.21051

Pelled, G., Bergman, H., and Goelman, G. (2002). Bilateral overactivation of the

sensorimotor cortex in the unilateral rodent model of Parkinson’s disease - a

functional magnetic resonance imaging study. Eur. J. Neurosci. 15, 389–394.

doi: 10.1046/j.0953-816x.2001.01866.x

Pelled, G., Bergstrom, D. A., Tierney, P. L., Conroy, R. S., Chuang, K. H., Yu, D.,

et al. (2009). Ipsilateral cortical fMRI responses after peripheral nerve damage

in rats reflect increased interneuron activity. Proc. Natl. Acad. Sci. U.S.A. 106,

14114–14119. doi: 10.1073/pnas.0903153106

Pelled, G., Chuang, K. H., Dodd, S. J., and Koretsky, A. P. (2007b).

Functional MRI detection of bilateral cortical reorganization in the rodent

brain following peripheral nerve deafferentation. Neuroimage 37, 262–273.

doi: 10.1016/j.neuroimage.2007.03.069

Perez, M. A., Wise, S. P., Willingham, D. T., and Cohen, L. G. (2007).

Neurophysiological mechanisms involved in transfer of procedural knowledge.

J. Neurosci. 27, 1045–1053. doi: 10.1523/JNEUROSCI.4128-06.2007

Petreanu, L., Huber, D., Sobczyk, A., and Svoboda, K. (2007). Channelrhodopsin-

2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10,

663–668. doi: 10.1038/nn1891

Plautz, E. J., Barbay, S., Frost, S. B., Zoubina, E. V., Stowe, A. M., Dancause,

N., et al. (2016). Effects of subdural monopolar cortical stimulation paired

with rehabilitative training on behavioral and neurophysiological recovery after

cortical ischemic stroke in adult squirrel monkeys. Neurorehabil. Neural Repair

30, 159–172. doi: 10.1177/1545968315619701

Polonara, G., Mascioli, G., Foschi, N., Salvolini, U., Pierpaoli, C., Manzoni, T.,

et al. (2015). Further evidence for the topography and connectivity of the

corpus callosum: an FMRI study of patients with partial callosal resection. J.

Neuroimaging 25, 465–473. doi: 10.1111/jon.12136

Pritzel, M., Huston, J. P., and Sarter, M. (1983a). Behavioral and neuronal

reorganization after unilateral substantia nigra lesions: evidence for

increased interhemispheric nigrostriatal projections. Neuroscience 9, 879–888.

doi: 10.1016/0306-4522(83)90276-2

Pritzel, M., Sarter, M., Morgan, S., and Huston, J. P. (1983b). Interhemispheric

nigrostriatal projections in the rat: bifurcating nigral projections and

loci of crossing in the diencephalon. Brain Res. Bull. 10, 385–390.

doi: 10.1016/0361-9230(83)90108-9

Qin, S., Yin, H., Yang, C., Dou, Y., Liu, Z., Zhang, P., et al. (2016). A magnetic

protein biocompass. Nat. Mater. 15, 217–226. doi: 10.1038/nmat4484

Rock, C., and Apicella, A. J. (2015). Callosal projections drive neuronal-

specific responses in the mouse auditory cortex. J. Neurosci. 35, 6703–6713.

doi: 10.1523/JNEUROSCI.5049-14.2015

Roedter, A., Winkler, C., Samii, M., Walter, G. F., Brandis, A., and

Nikkhah, G. (2001). Comparison of unilateral and bilateral intrastriatal

6-hydroxydopamine-induced axon terminal lesions: evidence for

interhemispheric functional coupling of the two nigrostriatal pathways. J.

Comp. Neurol. 432, 217–229. doi: 10.1002/cne.1098

Rotenberg, A., Muller, P., Birnbaum, D., Harrington, M., Riviello, J. J., Pascual-

Leone, A., et al. (2008). Seizure suppression by EEG-guided repetitive

transcranial magnetic stimulation in the rat. Clin. Neurophysiol. 119,

2697–2702. doi: 10.1016/j.clinph.2008.09.003

Rothermel, M., Brunert, D., Zabawa, C., Díaz-Quesada, M., and Wachowiak, M.

(2013). Transgene expression in target-defined neuron populations mediated

by retrograde infection with adeno-associated viral vectors. J. Neurosci. 33,

15195–15206. doi: 10.1523/JNEUROSCI.1618-13.2013

Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D.,

and Bullmore, E. (2005). Neurophysiological architecture of functional

magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342.

doi: 10.1093/cercor/bhi016

Sato, T. K., Haider, B., Häusser, M., and Carandini, M. (2016). An excitatory

basis for divisive normalization in visual cortex. Nat. Neurosci. 19, 568–570.

doi: 10.1038/nn.4249

Schiff, N. D., Giacino, J. T., Kalmar, K., Victor, J. D., Baker, K., Gerber, M.,

et al. (2007). Behavioural improvements with thalamic stimulation after severe

traumatic brain injury. Nature 448, 600–603. doi: 10.1038/nature06041

Schmidt, K. E., Lomber, S. G., and Innocenti, G. M. (2010). Specificity of

neuronal responses in primary visual cortex is modulated by interhemispheric

corticocortical input. Cereb. Cortex 20, 2776–2786. doi: 10.1093/cercor/bhq024

Sellers, K. K., Mellin, J. M., Lustenberger, C.M., Boyle, M. R., Lee,W. H., Peterchev,

A. V., et al. (2015). Transcranial direct current stimulation (tDCS) of frontal

cortex decreases performance on the WAIS-IV intelligence test. Behav. Brain

Res. 290, 32–44. doi: 10.1016/j.bbr.2015.04.031

Shin, S. S., Pathak, S., Presson, N., Bird, W., Wagener, L., Schneider, W., et al.

(2014). Detection of white matter injury in concussion using high-definition

fiber tractography. Prog. Neurol. Surg. 28, 86–93. doi: 10.1159/000358767

Silberstein, P., Pogosyan, A., Kühn, A. A., Hotton, G., Tisch, S., Kupsch, A., et al.

(2005). Cortico-cortical coupling in Parkinson’s disease and its modulation by

therapy. Brain 128(Pt 6), 1277–1291. doi: 10.1093/brain/awh480

Spagnolo, F., Coppi, E., Chieffo, R., Straffi, L., Fichera, M., Nuara, A., et al. (2013).

Interhemispheric balance in Parkinson’s disease: a transcranial magnetic

stimulation study. Brain Stimul. 6, 892–897. doi: 10.1016/j.brs.2013.05.004

Stanley, S. A., Gagner, J. E., Damanpour, S., Yoshida, M., Dordick, J.

S., and Friedman, J. M. (2012). Radio-wave heating of iron oxide

nanoparticles can regulate plasma glucose in mice. Science 336, 604–608.

doi: 10.1126/science.1216753

Stark, D. E., Margulies, D. S., Shehzad, Z. E., Reiss, P., Kelly, A. M., Uddin,

L. Q., et al. (2008). Regional variation in interhemispheric coordination

of intrinsic hemodynamic fluctuations. J. Neurosci. 28, 13754–13764.

doi: 10.1523/JNEUROSCI.4544-08.2008

Sullivan, R. M., Parker, B. A., and Szechtman, H. (1993). Role of the corpus

callosum in expression of behavioral asymmetries induced by a unilateral

dopamine lesion of the substantia nigra in the rat. Brain Res. 609, 347–350.

doi: 10.1016/0006-8993(93)90895-T

Sung, W. H., Wang, C. P., Chou, C. L., Chen, Y. C., Chang, Y. C., and Tsai, P.

Y. (2013). Efficacy of coupling inhibitory and facilitatory repetitive transcranial

magnetic stimulation to enhance motor recovery in hemiplegic stroke patients.

Stroke 44, 1375–1382. doi: 10.1161/STROKEAHA.111.000522

Frontiers in Neural Circuits | www.frontiersin.org 14 March 2017 | Volume 11 | Article 15

https://doi.org/10.1038/nn.3751
https://doi.org/10.1002/ana.10848
https://doi.org/10.1093/cercor/bhm221
https://doi.org/10.1371/journal.pone.0035080
https://doi.org/10.1016/j.jns.2014.05.017
https://doi.org/10.1016/j.neulet.2009.07.040
https://doi.org/10.5535/arm.2014.38.3.297
https://doi.org/10.1016/j.neuron.2005.01.008
https://doi.org/10.1016/j.neuroimage.2009.09.054
https://doi.org/10.1111/j.1460-9568.2005.04035.x
https://doi.org/10.1002/jmri.21051
https://doi.org/10.1046/j.0953-816x.2001.01866.x
https://doi.org/10.1073/pnas.0903153106
https://doi.org/10.1016/j.neuroimage.2007.03.069
https://doi.org/10.1523/JNEUROSCI.4128-06.2007
https://doi.org/10.1038/nn1891
https://doi.org/10.1177/1545968315619701
https://doi.org/10.1111/jon.12136
https://doi.org/10.1016/0306-4522(83)90276-2
https://doi.org/10.1016/0361-9230(83)90108-9
https://doi.org/10.1038/nmat4484
https://doi.org/10.1523/JNEUROSCI.5049-14.2015
https://doi.org/10.1002/cne.1098
https://doi.org/10.1016/j.clinph.2008.09.003
https://doi.org/10.1523/JNEUROSCI.1618-13.2013
https://doi.org/10.1093/cercor/bhi016
https://doi.org/10.1038/nn.4249
https://doi.org/10.1038/nature06041
https://doi.org/10.1093/cercor/bhq024
https://doi.org/10.1016/j.bbr.2015.04.031
https://doi.org/10.1159/000358767
https://doi.org/10.1093/brain/awh480
https://doi.org/10.1016/j.brs.2013.05.004
https://doi.org/10.1126/science.1216753
https://doi.org/10.1523/JNEUROSCI.4544-08.2008
https://doi.org/10.1016/0006-8993(93)90895-T
https://doi.org/10.1161/STROKEAHA.111.000522
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Shin and Pelled Interhemispheric Neuromodulation

Takatsuru, Y., Fukumoto, D., Yoshitomo, M., Nemoto, T., Tsukada, H., and

Nabekura, J. (2009). Neuronal circuit remodeling in the contralateral cortical

hemisphere during functional recovery from cerebral infarction. J. Neurosci.

29, 10081–10086. doi: 10.1523/JNEUROSCI.1638-09.2009

Tazoe, T., Endoh, T., Kitamura, T., and Ogata, T. (2014). Polarity specific effects

of transcranial direct current stimulation on interhemispheric inhibition. PLoS

ONE 9:e114244. doi: 10.1371/journal.pone.0114244

Thordstein, M., and Constantinescu, R. (2012). Possibly lifesaving, noninvasive,

EEG-guided neuromodulation in anesthesia-refractory partial status

epilepticus. Epilepsy Behav. 25, 468–472. doi: 10.1016/j.yebeh.2012.07.026

Tischler, H., Moran, A., Belelovsky, K., Bronfeld, M., Korngreen, A., and

Bar-Gad, I. (2012). Changes in basal ganglia processing of cortical input

following magnetic stimulation in Parkinsonism. Neurobiol. Dis. 48, 464–473.

doi: 10.1016/j.nbd.2012.07.021

Tsien, J. Z. (2016). Cre-lox neurogenetics: 20 years of versatile applications in brain

research and counting. Front. Genet. 7:19. doi: 10.3389/fgene.2016.00019

Uddin, L. Q., Mooshagian, E., Zaidel, E., Scheres, A., Margulies, D. S.,

Kelly, A. M., et al. (2008). Residual functional connectivity in the split-

brain revealed with resting-state functional MRI. Neuroreport 19, 703–709.

doi: 10.1097/WNR.0b013e3282fb8203

Udupa, K., Ni, Z., Gunraj, C., and Chen, R. (2010). Effect of long interval

interhemispheric inhibition on intracortical inhibitory and facilitatory circuits.

J. Physiol. 588(Pt 14), 2633–2641. doi: 10.1113/jphysiol.2010.189548

Valiengo, L., Casati, R., Bolognini, N., Lotufo, P. A., Benseñor, I. M., Goulart, A.

C., et al. (2016). Transcranial direct current stimulation for the treatment of

post-stroke depression in aphasic patients: a case series.Neurocase 22, 225–228.

doi: 10.1080/13554794.2015.1130231

VanHaerents, S., Herman, S. T., Pang, T., Pascual-Leone, A., and Shafi, M.

M. (2015). Repetitive transcranial magnetic stimulation; A cost-effective and

beneficial treatment option for refractory focal seizures. Clin. Neurophysiol.

126, 1840–1842. doi: 10.1016/j.clinph.2014.12.004

Vestito, L., Rosellini, S., Mantero, M., and Bandini, F. (2014). Long-term effects of

transcranial direct-current stimulation in chronic post-stroke aphasia: a pilot

study. Front. Hum. Neurosci. 8:785. doi: 10.3389/fnhum.2014.00785

Volz, L. J., Sarfeld, A. S., Diekhoff, S., Rehme, A. K., Pool, E. M., Eickhoff, S.

B., et al. (2015). Motor cortex excitability and connectivity in chronic stroke:

a multimodal model of functional reorganization. Brain Struct. Funct. 220,

1093–1107. doi: 10.1007/s00429-013-0702-8

Wadghiri, Y. Z., Li, J., Wang, J., Hoang, D. M., Sun, Y., Xu, H., et al. (2013).

Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer’s

disease transgenic mice using magnetic resonance microimaging. PLoS ONE

8:e57097. doi: 10.1371/journal.pone.0057097

Wang, C. C., Wang, C. P., Tsai, P. Y., Hsieh, C. Y., Chan, R. C., and Yeh,

S. C. (2014). Inhibitory repetitive transcranial magnetic stimulation of the

contralesional premotor and primary motor cortices facilitate poststroke

motor recovery. Restor. Neurol. Neurosci. 32, 825–835. doi: 10.3233/RNN-

140410

Wang, C. P., Tsai, P. Y., Yang, T. F., Yang, K. Y., and Wang, C. C. (2014).

Differential effect of conditioning sequences in coupling inhibitory/facilitatory

repetitive transcranial magnetic stimulation for poststroke motor recovery.

CNS Neurosci. Ther. 20, 355–363. doi: 10.1111/cns.12221

Wang, R. Y., Tseng, H. Y., Liao, K. K., Wang, C. J., Lai, K. L., and Yang,

Y. R. (2012). rTMS combined with task-oriented training to improve

symmetry of interhemispheric corticomotor excitability and gait performance

after stroke: a randomized trial. Neurorehabil. Neural Repair 26, 222–230.

doi: 10.1177/1545968311423265

Weiss, D., Klotz, R., Govindan, R. B., Scholten, M., Naros, G., Ramos-Murguialday,

A., et al. (2015). Subthalamic stimulation modulates cortical motor network

activity and synchronization in Parkinson’s disease. Brain 138(Pt 3), 679–693.

doi: 10.1093/brain/awu380

Wheeler, M. A., Smith, C. J., Ottolini, M., Barker, B. S., Purohit, A. M., Grippo, R.

M., et al. (2016). Genetically targeted magnetic control of the nervous system.

Nat. Neurosci. 19, 756–761. doi: 10.1038/nn.4265

Wieshmann, U. C., Milinis, K., Paniker, J., Das, K., Jenkinson, M. D., Brodbelt,

A., et al. (2015). The role of the corpus callosum in seizure spread:

MRI lesion mapping in oligodendrogliomas. Epilepsy Res. 109, 126–133.

doi: 10.1016/j.eplepsyres.2014.10.023

Woods, A. J., Bryant, V., Sacchetti, D., Gervits, F., and Hamilton, R. (2015). Effects

of electrode drift in transcranial direct current stimulation. Brain Stimul. 8,

515–519. doi: 10.1016/j.brs.2014.12.007

Wu, T. C., Wilde, E. A., Bigler, E. D., Li, X., Merkley, T. L., Yallampalli, R.,

et al. (2013). Longitudinal changes in the corpus callosum following pediatric

traumatic brain injury. Dev. Neurosci. 32, 361–373. doi: 10.1159/000317058

Yadollahpour, A., Firouzabadi, S. M., Shahpari, M., and Mirnajafi-Zadeh, J. (2014).

Repetitive transcranial magnetic stimulation decreases the kindling induced

synaptic potentiation: effects of frequency and coil shape. Epilepsy Res. 108,

190–201. doi: 10.1016/j.eplepsyres.2013.11.023

Yang, X., Song, L., and Liu, Z. (2010). The effect of repetitive transcranial magnetic

stimulation on a model rat of Parkinson’s disease. Neuroreport 21, 268–272.

doi: 10.1097/WNR.0b013e328335b411

Yoon, K. J., Lee, Y. T., Chae, S. W., Park, C. R., and Kim, D. Y. (2016). Effects of

anodal transcranial direct current stimulation (tDCS) on behavioral and spatial

memory during the early stage of traumatic brain injury in the rats. J. Neurol.

Sci. 362, 314–320. doi: 10.1016/j.jns.2016.02.005

Zemelman, B. V., Nesnas, N., Lee, G. A., and Miesenbock, G. (2003).

Photochemical gating of heterologous ion channels: remote control over

genetically designated populations of neurons. Proc. Natl. Acad. Sci. U.S.A. 100,

1352–1357. doi: 10.1073/pnas.242738899

Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K.,Watzke, N., et al. (2007).

Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639.

doi: 10.1038/nature05744

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Shin and Pelled. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 15 March 2017 | Volume 11 | Article 15

https://doi.org/10.1523/JNEUROSCI.1638-09.2009
https://doi.org/10.1371/journal.pone.0114244
https://doi.org/10.1016/j.yebeh.2012.07.026
https://doi.org/10.1016/j.nbd.2012.07.021
https://doi.org/10.3389/fgene.2016.00019
https://doi.org/10.1097/WNR.0b013e3282fb8203
https://doi.org/10.1113/jphysiol.2010.189548
https://doi.org/10.1080/13554794.2015.1130231
https://doi.org/10.1016/j.clinph.2014.12.004
https://doi.org/10.3389/fnhum.2014.00785
https://doi.org/10.1007/s00429-013-0702-8
https://doi.org/10.1371/journal.pone.0057097
https://doi.org/10.3233/RNN-140410
https://doi.org/10.1111/cns.12221
https://doi.org/10.1177/1545968311423265
https://doi.org/10.1093/brain/awu380
https://doi.org/10.1038/nn.4265
https://doi.org/10.1016/j.eplepsyres.2014.10.023
https://doi.org/10.1016/j.brs.2014.12.007
https://doi.org/10.1159/000317058
https://doi.org/10.1016/j.eplepsyres.2013.11.023
https://doi.org/10.1097/WNR.0b013e328335b411
https://doi.org/10.1016/j.jns.2016.02.005
https://doi.org/10.1073/pnas.242738899
https://doi.org/10.1038/nature05744
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases
	Background
	Interhemispheric Connectivity in DBS Studies
	Noninvasive Brain Stimulation
	Transcranial Magnetic Stimulation
	Transcranial Magnetic Stimulation Studies in Stroke
	Transcranial Magnetic Stimulation Studies in Traumatic Brain Injury
	Transcranial Magnetic Stimulation Studies in Parkinson's Disease
	Transcranial Magnetic Stimulation Studies in Epilepsy
	Transcranial Direct Current Stimulation

	Novel Noninvasive Neuromodulation Techniques
	Optogenetic Manipulations of Interhemispheric Activity

	Future Directions
	Author Contributions
	Acknowledgments
	References


