33 research outputs found

    Change-Point Testing and Estimation for Risk Measures in Time Series

    Full text link
    We investigate methods of change-point testing and confidence interval construction for nonparametric estimators of expected shortfall and related risk measures in weakly dependent time series. A key aspect of our work is the ability to detect general multiple structural changes in the tails of time series marginal distributions. Unlike extant approaches for detecting tail structural changes using quantities such as tail index, our approach does not require parametric modeling of the tail and detects more general changes in the tail. Additionally, our methods are based on the recently introduced self-normalization technique for time series, allowing for statistical analysis without the issues of consistent standard error estimation. The theoretical foundation for our methods are functional central limit theorems, which we develop under weak assumptions. An empirical study of S&P 500 returns and US 30-Year Treasury bonds illustrates the practical use of our methods in detecting and quantifying market instability via the tails of financial time series during times of financial crisis

    Inference for Large Panel Data with Many Covariates

    Full text link
    This paper proposes a novel testing procedure for selecting a sparse set of covariates that explains a large dimensional panel. Our selection method provides correct false detection control while having higher power than existing approaches. We develop the inferential theory for large panels with many covariates by combining post-selection inference with a novel multiple testing adjustment. Our data-driven hypotheses are conditional on the sparse covariate selection. We control for family-wise error rates for covariate discovery for large cross-sections. As an easy-to-use and practically relevant procedure, we propose Panel-PoSI, which combines the data-driven adjustment for panel multiple testing with valid post-selection p-values of a generalized LASSO, that allows us to incorporate priors. In an empirical study, we select a small number of asset pricing factors that explain a large cross-section of investment strategies. Our method dominates the benchmarks out-of-sample due to its better size and power

    Deep Learning Statistical Arbitrage

    Full text link
    Statistical arbitrage identifies and exploits temporal price differences between similar assets. We propose a unifying conceptual framework for statistical arbitrage and develop a novel deep learning solution, which finds commonality and time-series patterns from large panels in a data-driven and flexible way. First, we construct arbitrage portfolios of similar assets as residual portfolios from conditional latent asset pricing factors. Second, we extract the time series signals of these residual portfolios with one of the most powerful machine learning time-series solutions, a convolutional transformer. Last, we use these signals to form an optimal trading policy, that maximizes risk-adjusted returns under constraints. We conduct a comprehensive empirical comparison study with daily large cap U.S. stocks. Our optimal trading strategy obtains a consistently high out-of-sample Sharpe ratio and substantially outperforms all benchmark approaches. It is orthogonal to common risk factors, and exploits asymmetric local trend and reversion patterns. Our strategies remain profitable after taking into account trading frictions and costs. Our findings suggest a high compensation for arbitrageurs to enforce the law of one price

    Contingent Convertible Bonds: Pricing, Dilution

    No full text
    corecore