15 research outputs found

    Progress report on the stratigraphy, sedimentology and significance of the Kimerot and Bear Creek groups, Kilohigok Basin, District of Mackenzie

    Get PDF
    Some results of ongoing field investigations of the Kimerot and Bear Creek groups are summarized as they pertain to several topics, including: (1) revision of stratigraphic nomenclature for Kilohigok Basin; (2) vertical and lateral distribution of facies/fabrics of disconformities developed in the lower Bear Creek group; ( 3) stratigraphy and sedimentology of the Beechey Formation; (4) diagenesis studies of the Peg Formation (new name); and (5) constraints on the stratigraphy, sedimentology, and provenance of the Burnside Formation

    Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'

    Get PDF
    The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved

    Charophyceae (charales)

    No full text
    The charophytes, or stoneworts, are a group of green algae with six extant genera in one family, distributed worldwide in freshwater ponds and lakes. They are among the green algal groups most closely related to land plants and exhibit a complex thallus, with multinucleate internodal cells joined at nodes comprising smaller, uninucleate cells giving rise to whorled branchlets. Two genera (Chara, Nitella) contain most of the described species, with a third (Tolypella) containing several dozen taxa. The remaining genera have one or a few species. Reproduction is oogamous, with sperm and eggs produced in separate multicellular structures. The thallus is haploid; the zygote is the only diploid cell in the life cycle, and meiosis is followed by the development of a resistant spore. Thalli and spores are often encrusted with calcium carbonate. Such spores are abundant in the fossil record of the Charales, which extends to the Upper Silurian, and many genera and families have become extinct. These algae provide important ecosystem services, for example, as colonizing species, as biological agents for producing water clarity, or as the base of the food web. Charophytes are important for the study of evolution of embryophyte development, growth meristems, and cell biophysics. As one of the green algal groups most closely related to land plants, the rich charophyte fossil record may reveal clues regarding the earliest algae that invaded the land

    New Finds of Skeletal Fossils in the Terminal Neoproterozoic of the Siberian Platform and Spain

    No full text
    corecore