10 research outputs found

    Method for Estimation of Protein Isoelectric Point

    No full text
    Adsorption of sample protein to Eu<sup>3+</sup> chelate-labeled nanoparticles is the basis of the developed noncompetitive and homogeneous method for the estimation of the protein isoelectric point (pI). The lanthanide ion of the nanoparticle surface-conjugated Eu<sup>3+</sup> chelate is dissociated at a low pH, therefore decreasing the luminescence signal. A nanoparticle-adsorbed sample protein prevents the dissociation of the chelate, leading to a high luminescence signal. The adsorption efficiency of the sample protein is reduced above the isoelectric point due to the decreased electrostatic attraction between the negatively charged protein and the negatively charged particle. Four proteins with isoelectric points ranging from ∼5 to 9 were tested to show the performance of the method. These pI values measured with the developed method were close to the theoretical and experimental literature values. The method is sensitive and requires a low analyte concentration of submilligrams per liter, which is nearly 10000 times lower than the concentration required for the traditional isoelectric focusing. Moreover, the method is significantly faster and simpler than the existing methods, as a ready-to-go assay was prepared for the microtiter plate format. This mix-and-measure concept is a highly attractive alternative for routine laboratory work

    Simple Nanoparticle-Based Luminometric Method for Molecular Weight Determination of Polymeric Compounds

    No full text
    A nanoparticle-based method utilizing time-resolved luminescence resonance energy transfer (TR-LRET) was developed for molecular weight determination. This mix-and-measure nanoparticle method is based on the competitive adsorption between the analyte and the acceptor-labeled protein to donor Eu­(III) nanoparticles. The size-dependent adsorption of molecules enables the molecular weight determination of differently sized polymeric compounds down to a concentration level of micrograms per liter. The molecular weight determination from 1 to 10 kDa for polyamino acids and from 0.3 to 70 kDa for polyethylene imines is demonstrated. The simple and cost-effective nanoparticle method as microtiter plate assay format shows great potential for the detection of the changes in molecular weight or for quantification of differently sized molecules in biochemical laboratories and in industrial polymeric processes

    Sensitive Luminometric Method for Protein Quantification in Bacterial Cell Lysate Based on Particle Adsorption and Dissociation of Chelated Europium

    No full text
    A sensitive and rapid assay for the quantification of proteins, based on sample protein adsorption to Eu<sup>3+</sup>-chelate-labeled nanoparticles, was developed. The lanthanide ion of the surface-conjugated Eu<sup>3+</sup> chelate is dissociated at a low pH, decreasing the luminescence signal. The increased concentration of the sample protein prevents dissociation of the chelate, leading to a high luminescence signal due to the nanoparticle-bound protein. The assay sensitivity for the quantification of proteins was 130 pg for bovine serum albumin (BSA), which is an improvement of nearly 100-fold from the most sensitive commercial methods. The average coefficient of variation for the assay of BSA was 8%. The protein-to-protein variability was sufficiently low; the signal values varied within a 28% coefficient of variation for nine different proteins. The developed method is relatively insensitive to the presence of contaminants, such as nonionic detergents commonly found in biological samples. The existing methods tested for the total protein quantification failed to measure protein concentration in the presence of bacterial cell lysate. The developed method quantified protein also in samples containing insoluble cell components reducing the need for additional centrifugal assay steps and making the concept highly attractive for routine laboratory work

    Intracellular Trafficking of Fluorescent Nanodiamonds and Regulation of Their Cellular Toxicity

    No full text
    In this paper, cellular management of fluorescent nanodiamonds (FNDs) has been studied for better understanding in the design for potential applications of FNDs in biomedicine. The FNDs have shown to be photostable probes for bioimaging and thus are well-suited, for example, long-term tracking purposes. The FNDs also exhibit good biocompatibility and, in general, low toxicity for cell labeling. To demonstrate the underlying mechanism of cells coping the low but potentially toxic effects by nondegradable FNDs, we have studied their temporal intracellular trafficking. The FNDs were observed to be localized as distinct populations inside cells in early endosomes, lysosomes, and in proximity to the plasma membrane. The localization of FNDs in early endosomes suggests the internalization of FNDs, and lysosomal localization, in turn, can be interpreted as a prestate for exocytosis via lysosomal degradation pathway. The endocytosis and exocytosis appear to be occurring simultaneously in our observations. The mechanism of continuous endocytosis and exocytosis of FNDs could be necessary for cells to maintain normal proliferation. Furthermore, 120 h cell growth assay was performed to verify the long-term biocompatibility of FNDs for cellular studies

    Advanced Cellulose Fibers for Efficient Immobilization of Enzymes

    No full text
    Biocatalytic pulp fibers were prepared using surface functionalization of bleached kraft pulp with amino groups (F) and further immobilization of a cross-linked glucose oxidase (G*) from Aspergillus niger. The cross-linked enzymes (G*) were characterized using X-ray spectroscopy, Fourier transform infrared spectroscopy, dynamic scanning calorimetry, and dynamic light scattering. According to standard assays, the G* content on the resulting fibers (FG*) was of 11 mg/g of fiber, and enzyme activity was of 215 U/g. The results from confocal- and stimulated emission depletion microscopy techniques demonstrated that glucose oxidase do not penetrate the interlayers of fibers. The benefit of pulp fiber functionalization was evident in the present case, as the introduction of amino groups allowed the immobilization of larger amount of enzymes and rendered more efficient systems. Using the approach described on this paper, several advanced materials from wood pulp fibers and new bioprocesses might be developed by selecting the correct enzyme for the target applications

    Advanced Cellulose Fibers for Efficient Immobilization of Enzymes

    No full text
    Biocatalytic pulp fibers were prepared using surface functionalization of bleached kraft pulp with amino groups (F) and further immobilization of a cross-linked glucose oxidase (G*) from Aspergillus niger. The cross-linked enzymes (G*) were characterized using X-ray spectroscopy, Fourier transform infrared spectroscopy, dynamic scanning calorimetry, and dynamic light scattering. According to standard assays, the G* content on the resulting fibers (FG*) was of 11 mg/g of fiber, and enzyme activity was of 215 U/g. The results from confocal- and stimulated emission depletion microscopy techniques demonstrated that glucose oxidase do not penetrate the interlayers of fibers. The benefit of pulp fiber functionalization was evident in the present case, as the introduction of amino groups allowed the immobilization of larger amount of enzymes and rendered more efficient systems. Using the approach described on this paper, several advanced materials from wood pulp fibers and new bioprocesses might be developed by selecting the correct enzyme for the target applications

    Protein Quantification Using Resonance Energy Transfer between Donor Nanoparticles and Acceptor Quantum Dots

    No full text
    A homogeneous time-resolved luminescence resonance energy transfer (TR-LRET) assay has been developed to quantify proteins. The competitive assay is based on resonance energy transfer (RET) between two luminescent nanosized particles. Polystyrene nanoparticles loaded with Eu<sup>3+</sup> chelates (EuNPs) act as donors, while protein-coated quantum dots (QDs), either CdSe/ZnS emitting at 655 nm (QD655-strep) or CdSeTe/ZnS with emission wavelength at 705 nm (QD705-strep), are acceptors. In the absence of analyte protein, in our case bovine serum albumin (BSA), the protein-coated QDs bind nonspecifically to the EuNPs, leading to RET. In the presence of analyte proteins, the binding of the QDs to the EuNPs is prevented and the RET signal decreases. RET from the EuNPs to the QDs was confirmed and characterized with steady-state and time-resolved luminescence spectroscopy. In accordance with the Fòˆrster theory, the approximate average donor–acceptor distance is around 15 nm at RET efficiencies, equal to 15% for QD655 and 13% for QD705 acceptor, respectively. The limits of detection are below 10 ng of BSA with less than a 10% average coefficient of variation. The assay sensitivity is improved, when compared to the most sensitive commercial methods. The presented mix-and-measure method has potential to be implemented into routine protein quantification in biological laboratories

    Fuzzy Liquid Analysis by an Array of Nonspecifically Interacting Reagents: The Taste of Fluorescence

    No full text
    Complex or unknown liquid analysis requires extensive instrumentation and laboratory work; simple field devices usually have serious limitations in functionality, sensitivity, and applicability. This communication presents a novel, effective, and simple approach to fingerprinting liquids. The method is based on nonspecific interactions of the sample liquid, a long lifetime luminescent europium label, and various surface modulators in an array form that is readily converted to a field analysis μTAS system. As compared to existing e-nose or e-tongue techniques, the method is unique both in terms of sensitivity and usability, mainly due to the well-known unique properties of the europium label. This communication demonstrates the use of this new method in distinguishing different wines, waters, alcohols, and artificially modified berry juices
    corecore