334 research outputs found

    The discovery of Silk Route: Cultural and technology communication between China, Korea and Japan

    Get PDF
    One of the earliest civilizations took place in Asia, particularly the East Asian region. As a main result of war, historical travel, such as trading and pilgrimage, influenced the daily life of most people in the region. The Han Dynasty was traced back as the most significant period that triggered travelling activities during the discovery of the Silk Road. Since then, travelling facilities were developed, which consequently led to the increased inter-region movement of people and merchants. This study explores the historical development of travels in Eastern Asia, with a particular focus on the expansion of the Silk Road throughout several dynastic periods of China, as well as its influence on peninsular Korea and Japan. This study concludes that the Silk Road is an important channel for the exchange of tangible and intangible elements between China, Japan, and peninsular Korea as a sinicization process, particularly in the exchange of food, papermaking, and printing technology. An increased understanding of Asia’s travel history helps to assess the travelling patterns in the region by revisiting the influence of tourists’ socio-demographic factors to include the cultural background with historical element

    4-(4-Chloro­phen­yl)-4-hy­droxy­piperidinium maleate maleic acid solvate

    Get PDF
    In the cation of the title compound, C11H15ClNO+·C4H3O4 −·C4H4O4, the dihedral angle between the mean planes of the chlorine-substituted aromatic ring and the 4-hy­droxy­piperidinium ring (C–C–C–C–C–N) is 61.9 (8)°. Intra­molecular O—H⋯O and inter­molecular O—H⋯O and N—H⋯O hydrogen bonding, as well as weak π-stacking inter­actions [centroid–centroid distance = 3.646 (5) Å] help to establish the packing

    Revisiting the Marrow Metabolic Changes after Chemotherapy in Lymphoma: A Step towards Personalized Care

    Get PDF
    Purpose. The aims were to correlate individual marrow metabolic changes after chemotherapy with bone marrow biopsy (BMBx) for its potential value of personalized care in lymphoma. Methods. 26 patients (mean age, 58 ± 15 y; 13 female, 13 male) with follicular lymphoma or diffuse large B-cell lymphoma, referred to FDG-PET/CT imaging, who had BMBx from unilateral or bilateral iliac crest(s) before chemotherapy, were studied retrospectively. The maximal standardized uptake value (SUV) was measured from BMBx site over the same area on both initial staging and first available restaging FDG-PET/CT scan. Results. 35 BMBx sites in 26 patients were evaluated. 12 of 35 sites were BMBx positive with interval decrease in SUV in 11 of 12 sites (92%). The remaining 23 of 35 sites were BMBx negative with interval increase in SUV in 21 of 23 sites (91%). The correlation between SUV change over the BMBx site before and after chemotherapy and BMBx result was significant (P < 0.0001). Conclusions. This preliminary result demonstrates a strong correlation between marrow metabolic changes (as determined by FDG PET) after chemotherapy and bone marrow involvement proven by biopsy. This may provide a retrospective means of personalized management of marrow involvement in deciding whether to deliver more extended therapy or closer followup of lymphoma patients

    Influence of powder-bed temperature on the microstructure and mechanical properties of Ti-6Al-4V produced by selective laser melting

    Get PDF
    Advanced characterisation techniques were used on LPBF Ti-6Al-4V samples produced on a heated base plate. When the substrate temperature is 100{\deg}C the elongation is 6\%, which increases and peaks at 10\% at 570{\deg}C, then sharply decreases to zero ductility at 770{\deg}C. At 100{\deg}C, a heavily strained and twinned microstructure, primarily composed of {\alpha}+{\alpha}', was observed and it was comparable to asbuilt microstructures obtained by conventional LPBF methods. At higher temperatures, twins are no longer present and instead nano-scale {\beta} precipitates are observed within {\alpha}' and {\alpha}, as well as dislocation networks (570{\deg}C) and tangles (770{\deg}C). Solute segregation at crystal defects was observed in all pre-heating conditions. Al and V segregation at microtwins was observed in the 100{\deg}C sample, reporting for the first time `selective' and mutually exclusive Al- and V-rich regions forming in adjacent twins. V segregation at dislocations was observed in the 570{\deg}C and 770{\deg}C samples, consistent with the higher preheating temperatures. High O contents were measured in all samples but with apparent opposing effects. At 100{\deg}C and 570{\deg}C was estimated to be below the critical threshold for O embrittlement and locally aids in maintaining a strength high by solid solution strengthening, whereas at 770{\deg}C it was above the threshold, therefore failing in a brittle fashion. Based on these observations, the initial increase in ductility from 100{\deg}C to 570{\deg}C is attributed to a reduction in microtwins and the dislocation networks acting as `soft barriers' for slip within a coarser microstructure. The lack of ductility at 770{\deg}C was attributed to local solute redistribution causing dislocation pinning and an increase of O content in this sample

    Opipramol dipicrate

    Full text link

    Effect of Substrate Bed Temperature on Solute Segregation and Mechanical Properties in Ti–6Al–4V Produced by Laser Powder Bed Fusion

    Get PDF
    Titanium alloys are particularly sensitive to temperature during additive manufacturing processes, due to their dual phase microstructure and sensitivity to oxygen uptake. In this paper, laser powder bed fusion (LPBF) was used in conjunction with a heated substrate bed at 100 °C, 570 °C and 770 °C to produce specimens of Ti–6Al–4V, to investigate the change in mechanical properties and segregation of alloying elements. An initial increase in ductility was observed when increasing the temperature from 100 °C to 570 °C, followed by a significant loss in ductility when samples were produced at 770 °C. A suite of multi-scale characterisation techniques revealed that the as-printed microstructure was drastically different across the range of temperatures. At 100 °C, α + α′ phases were identified. Deformation twinning was extensively observed in the a phase, with Al and V segregating at the twin interfaces. At 570 °C (the most ductile sample), α′, α and nano-particles of β were observed, with networks of entangled dislocations showing V segregation. At 770 °C, no martensitic α′ was identified. The microstructure was an α + β microstructure and an increased volume fraction of tangled dislocations with localised V segregation. Thermodynamic modelling based on the Gibbs-free energy of formation showed that the increased V concentration at dislocations was insufficient to locally nucleate β phase. However, b-phase nucleation at grain boundaries (not dislocations) caused pinning of grain boundaries, impeding slip and leading to a reduction in ductility. It is likely that the increased O-content within specimens printed at increased temperatures also played a key role in high-temperature embrittlement. Building operations are therefore best performed below sub-transus temperatures, to encourage the growth of strengthening phases via solute segregation, and the build atmosphere must be tightly controlled to reduce oxygen uptake within the samples

    2-(4-Chloro­phen­yl)-6-meth­oxy­chroman-4-one

    Get PDF
    In the title mol­ecule, C16H13Cl O3, the two aromatic rings form a dihedral angle of 65.3 (1)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further packed into columns propagating in [100] by weak C—H⋯π inter­actions

    (E)-1-(4-Bromo­phen­yl)-3-(2-meth­oxy­phen­yl)prop-2-en-1-one

    Get PDF
    In the title compound, C16H13BrO2, the dihedral angle between the mean planes of the meth­oxy- and bromo-substituted benzene rings is 24.6 (1)°. The angles between the mean plane of the prop-2-en-1-one group and the 4-bromo­phenyl and 2-meth­oxy­phenyl ring planes are 18.8 (1) and 6.0 (1)°, respectively
    corecore