103 research outputs found

    A correction method of encoder bias in satellite laser ranging system

    Get PDF
    Abstract:In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between the absolute-position indices of the encoders and the astronomical coordinates, especially in the absence of a finder scope for our system. To solve this problem, a method is presented based on the phenomenon that all stars move anti-clockwise around Polaris in the northern hemisphere. Tests of the proposed adjustment procedure in a satellite laser ranging (SLR) system demonstrated the effectiveness and the time saved by using the approach, which greatly facilitates the optimization of a tracking system

    Progress of the satellite laser ranging system TROS1000

    Get PDF
    AbstractThe mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy as precise as 1 cm. Using recent observations in Wuhan, Jiufeng, Xianning, and Rongcheng, Shandong, we introduce the progress made using this mobile observation system

    Comprehensive investigation and regulatory function of lncRNAs engaged in western honey bee larval immune response to Ascosphaera apis invasion

    Get PDF
    Ascosphaera apis is a fungal pathogen that exclusively infects bee larvae, causing chalkbrood disease, which results in severe damage for beekeeping industry. Long non-coding RNAs (lncRNAs) are versatile regulators in various biological processes such as immune defense and host-pathogen interaction. However, expression pattern and regulatory role of lncRNAs involved in immune response of bee host to A. apis invasion is still very limited. Here, the gut tissues of Apis mellifera ligustica 4-, 5-, and 6-day-old larvae inoculated by A. apis spores (AmT1, AmT2, and AmT3 groups) and corresponding un-inoculated larval guts (AmCK1, AmCK2, and AmCK3 groups) were prepared and subjected to deep sequencing, followed by identification of lncRNAs, analysis of differentially expressed lncRNAs (DElncRNAs), and investigation of competing endogenous RNA (ceRNA) network. In total, 3,746 A. m. ligustica lncRNAs were identified, including 78 sense lncRNAs, 891 antisense lncRNAs, 1,893 intergenic lncRNAs, 346 bidirectional lncRNAs, and 210 intronic lncRNAs. In the 4-, 5-, and 6- comparison groups, 357, 236, and 505 DElncRNAs were discovered. Additionally, 217, 129, and 272 DElncRNAs were respectively predicted to regulate neighboring genes via cis-acting manner, and these targets were associated with a series of GO terms and KEGG pathways of great importance, such as response to stimulus and Jak-STAT signaling pathway. Moreover, 197, 95, and 356 DElncRNAs were observed to target 10, eight, and 21 DEmiRNAs and further target 147, 79, and 315 DEmRNAs, forming complex regulatory networks. Further investigation suggested that these targets were engaged in several key cellular and humoral immune pathways, such as phagosome and MAPK signaling pathway. Ultimately, the expression trends of nine randomly selected DElncRNAs were verified by RT-qPCR, confirming the authenticity and reliability of our transcriptome data. Findings in this current work not only provide candidate DElncRNAs for functional study, but also lay a foundation for unclosing the mechanism underlying DElncRNA-regulated larval immune responses to A. apis invasion

    Enhancing photoelectrochemical CO2 reduction with silicon photonic crystals

    Get PDF
    The effectiveness of silicon (Si) and silicon-based materials in catalyzing photoelectrochemistry (PEC) CO2 reduction is limited by poor visible light absorption. In this study, we prepared two-dimensional (2D) silicon-based photonic crystals (SiPCs) with circular dielectric pillars arranged in a square array to amplify the absorption of light within the wavelength of approximately 450 nm. By investigating five sets of n + p SiPCs with varying dielectric pillar sizes and periodicity while maintaining consistent filling ratios, our findings showed improved photocurrent densities and a notable shift in product selectivity towards CH4 (around 25% Faradaic Efficiency). Additionally, we integrated platinum nanoparticles, which further enhanced the photocurrent without impacting the enhanced light absorption effect of SiPCs. These results not only validate the crucial role of SiPCs in enhancing light absorption and improving PEC performance but also suggest a promising approach towards efficient and selective PEC CO2 reduction

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF
    Neuromatch Academy (https://academy.neuromatch.io; (van Viegen et al., 2021)) was designed as an online summer school to cover the basics of computational neuroscience in three weeks. The materials cover dominant and emerging computational neuroscience tools, how they complement one another, and specifically focus on how they can help us to better understand how the brain functions. An original component of the materials is its focus on modeling choices, i.e. how do we choose the right approach, how do we build models, and how can we evaluate models to determine if they provide real (meaningful) insight. This meta-modeling component of the instructional materials asks what questions can be answered by different techniques, and how to apply them meaningfully to get insight about brain function

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF

    Recent Advances in Conformal Transmitarrays

    No full text
    This talk will give an overview of research on conformal transmitarrays conducted in University of Technology Sydney, Australia. More specifically, it includes our latest progress in high efficiency conformal transmitarrays and multi-beam conformal transmitarrays
    • …
    corecore