20 research outputs found

    Clinical and radiological characteristics of pediatric COVID-19 before and after the Omicron outbreak: a multi-center study

    Get PDF
    IntroductionThe emergence of the Omicron variant has seen changes in the clinical and radiological presentations of COVID-19 in pediatric patients. We sought to compare these features between patients infected in the early phase of the pandemic and those during the Omicron outbreak.MethodsA retrospective study was conducted on 68 pediatric COVID-19 patients, of which 31 were infected with the original SARS-CoV-2 strain (original group) and 37 with the Omicron variant (Omicron group). Clinical symptoms and chest CT scans were examined to assess clinical characteristics, and the extent and severity of lung involvement.ResultsPediatric COVID-19 patients predominantly had normal or mild chest CT findings. The Omicron group demonstrated a significantly reduced CT severity score than the original group. Ground-glass opacities were the prevalent radiological findings in both sets. The Omicron group presented with fewer symptoms, had milder clinical manifestations, and recovered faster than the original group.DiscussionThe clinical and radiological characteristics of pediatric COVID-19 patients have evolved with the advent of the Omicron variant. For children displaying severe symptoms warranting CT examinations, it is crucial to weigh the implications of ionizing radiation and employ customized scanning protocols and protective measures. This research offers insights into the shifting disease spectrum, aiding in the effective diagnosis and treatment of pediatric COVID-19 patients

    exactquantumscatteringstudyofthed2sds2reaction

    No full text
    The quantum scattering dynamics calculations are carried out for the exchange and abstraction processes in the D(~2S)+DS(~2Π) reaction by the time-dependent wave-packet (TDWP) method. These calculations are based on the high-quality ab initio potential energy surface of the reacting system. The reaction probabilities and integral cross sections are obtained in the collision energy (Ecol) range of 0.0-2.0 eV for the reactant DS initially in the ground state and the first vibrationally excited state. We take the Coriolis coupling (CC) effect into account and present the comparison between the CC and the centrifugal sudden (CS) approximation calculation. The dynamics results show that the initial vibrational excitation of DS enhances both abstraction and exchange processes except that it has little effect on the abstraction cross section in the high energy region

    exactquantumscatteringstudyofthed2sds2reaction

    No full text
    The quantum scattering dynamics calculations are carried out for the exchange and abstraction processes in the D(~2S)+DS(~2Π) reaction by the time-dependent wave-packet (TDWP) method. These calculations are based on the high-quality ab initio potential energy surface of the reacting system. The reaction probabilities and integral cross sections are obtained in the collision energy (Ecol) range of 0.0-2.0 eV for the reactant DS initially in the ground state and the first vibrationally excited state. We take the Coriolis coupling (CC) effect into account and present the comparison between the CC and the centrifugal sudden (CS) approximation calculation. The dynamics results show that the initial vibrational excitation of DS enhances both abstraction and exchange processes except that it has little effect on the abstraction cross section in the high energy region

    Early-stage psychotherapy produces elevated frontal white matter integrity in adult major depressive disorder.

    Get PDF
    BACKGROUND: Psychotherapy has demonstrated comparable efficacy to antidepressant medication in the treatment of major depressive disorder. Metabolic alterations in the MDD state and in response to treatment have been detected by functional imaging methods, but the underlying white matter microstructural changes remain unknown. The goal of this study is to apply diffusion tensor imaging techniques to investigate psychotherapy-specific responses in the white matter. METHODS: Twenty-one of forty-five outpatients diagnosed with major depression underwent diffusion tensor imaging before and after a four-week course of guided imagery psychotherapy. We compared fractional anisotropy in depressed patients (n = 21) with healthy controls (n = 22), and before-after treatment, using whole brain voxel-wise analysis. RESULTS: Post-treatment, depressed subjects showed a significant reduction in the 17-item Hamilton Depression Rating Scale. As compared to healthy controls, depressed subjects demonstrated significantly increased fractional anisotropy in the right thalamus. Psychopathological changes did not recover post-treatment, but a novel region of increased fractional anisotropy was discovered in the frontal lobe. CONCLUSIONS: At an early stage of psychotherapy, higher fractional anisotropy was detected in the frontal emotional regulation-associated region. This finding reveals that psychotherapy may induce white matter changes in the frontal lobe. This remodeling of frontal connections within mood regulation networks positively contributes to the "top-down" mechanism of psychotherapy

    Hierarchical Design of Co(OH)2/Ni3S2 Heterostructure on Nickel Foam for Energy Storage

    No full text
    In this study, we rationally designed a facile stepwise route and successfully synthesized a Co(OH)2/Ni3S2 heterostructure supported on nickel foam (NF) as a binder-free electrode for energy storage. Galvanostatic deposition was first applied to produce uniform Co(OH)2 nanoflakes on NF. Then, Ni3S2 was applied to its surface by potentiostatic deposition to form a Co(OH)2/Ni3S2 heterostructure at room temperature. The added Co(OH)2 not only functions as a practical electrochemically active component but also provides support for the growth of Ni3S2, and the deposition amount of Ni3S2 is controlled by adjusting the electrodeposition duration of Ni3S2. Then, the electrochemical behaviors of the Co(OH)2/Ni3S2 composite can be optimized. A maximum areal specific capacitance (Cs) of 5.73 F cm−2 at 2 mA cm−2 was achieved, and the coulombic efficiency was as high as 94.14%. A capacitance retention of 84.38% was measured after 5000 charge–discharge cycles

    Achieving Self-Supported Hierarchical Cu(OH)<sub>2</sub>/Nickel–Cobalt Sulfide Electrode for Electrochemical Energy Storage

    No full text
    Herein, nickel–cobalt sulfide (NCS) nanoflakes covering the surface of Cu(OH)2 nanorods were achieved by a facile two-step electrodeposition strategy. The effect of CH4N2S concentration on formation mechanism and electrochemical behavior is investigated and optimized. Thanks to the synergistic effect of the selected composite components, the Cu(OH)2/NCS composite electrode can deliver a high areal specific capacitance (Cs) of 7.80 F cm−2 at 2 mA cm−2 and sustain 5.74 F cm−2 at 40 mA cm−2. In addition, coulombic efficiency was up to 84.30% and cyclic stability remained 82.93% within 5000 cycles at 40 mA cm−2. This innovative work provides an effective strategy for the design and construction of hierarchical composite electrodes for the development of energy storage devices

    Fractional anisotropic (FA) changes in MDD subjects relative to healthy controls, shown through sagittal, transverse, and coronal views (<i>p</i><0.001, uncorrected).

    No full text
    <p>(A): Decreased FA in the right cuneus gyrus white matter. (B)(C)(D): Increased FA in the right thalamus, right postcentral gyrus, and cerebellar vermis, respectively.</p
    corecore