7 research outputs found
Transcriptomic analysis reveals transcription factors involved in vascular bundle development and tissue maturation in ginger rhizomes (Zingiber officinale Roscoe)
Ginger (Zingiber officinale Roscoe) is an important vegetable with medicinal value. Rhizome development determines ginger yield and quality. However, little information is available about the molecular features underlying rhizome expansion and maturation. In this study, we investigated anatomy characteristics, lignin accumulation and transcriptome profiles during rhizome development. In young rhizomes, the vascular bundle (VB) was generated with only vessels in it, whereas in matured rhizomes, three to five layers of fibre bundle in the xylem were formed, resulting in VB enlargement. It indicates VB development favouring rhizome swelling. With rhizome matured, the lignin content was remarkably elevated, thus facilitating tissue lignification. To explore the regulators for rhizome development, nine libraries including ginger young rhizomes (GYR), growing rhizomes (GGR), and matured rhizomes (GMR) were established for RNA-Seq, a total of 1264 transcription factors (TFs) were identified. Among them, 35, 116, and 14 differentially expressed TFs were obtained between GYR and GGR, GYR and GMR, and GGR and GMR, respectively. These TFs were further divided into three categories. Among them, three ZobHLHs (homologs of Arabidopsis LHW and AtbHLH096) as well as one DIVARICATA homolog in ginger might play crucial roles in controlling VB development. Four ZoWRKYs and two ZoNACs might be potential regulators associated with rhizome maturation. Three ZoAP2/ERFs and one ZoARF might participate in rhizome development via hormone signalling. This result provides a molecular basis for rhizome expansion and maturation in ginger
Analysis of the Acoustic Environment of Typical Residential Areas along a Light Rail Line Based on GIS
The acoustic environment of urban residential areas is closely related to road traffic noise. More specifically, the effect of the light rail on the old residential area in Chongqing is potentially profound. Using geographic information system (GIS) to construct a map of the urban light rail’s influence on the acoustic environment of residential areas, the influence of noise can be determined. Very few studies exist on the impact of light rails on the acoustic environment of residential areas, and there is no literature on the impact of light rails on the acoustic environment of residential areas using GIS. In this study, the degree of influence of a light rail on nearby residential areas and the diffusion degree of light rail noise in these areas during various times of the day were analysed by measuring the objective indicators of acoustic landscape elements and evaluating subjective indicators. The layout mode of the residential areas and the light rail were superimposed, and other traffic noise influences were eliminated. This method provides a scientific basis for the planning, design, and reconstruction of residential areas
Effect of Heat Input on Microstructure and Mechanical Properties of Deposited Metal of E120C-K4 High Strength Steel Flux-Cored Wire
The effect of different heat inputs of 1.45 kJ/mm, 1.78 kJ/mm and 2.31 kJ/mm on the microstructure and mechanical properties of deposited metals of the self-developed AWS A5.28 E120C-K4 high strength steel flux-cored wire was studied by optical microscope, scanning electron microscope and mechanical property test. With the increase in heat input, the results showed that the microstructure of deposited metals became coarse. Acicular ferrite increased at first and then decreased, granular bainite increased and degenerated upper bainite and martensite decreased slightly. Under the low heat input of 1.45 kJ/mm, the cooling rate was fast and the element diffusion was uneven, which caused composition segregation and easy to form large size inclusions SiO2-TiC-CeAlO3 with weak binding to the matrix. Under the middle heat input of 1.78 kJ/mm, the composite rare earth inclusions in dimples were mainly TiC-CeAlO3. The dimples were small and uniformly distributed, and the dimple fracture mainly depended on the wall-breaking connection between medium-sized dimples rather than an intermediate media. Under the high heat input of 2.31 kJ/mm, SiO2 was easy to adhere to high melting point Al2O3 oxides to form irregular composite inclusions. Such irregular inclusions do not need to absorb too much energy to form necking. Finally, the integrated effects of microstructure and inclusions resulted in the optimum mechanical properties of deposited metals with a heat input of 1.78 kJ/mm, which was a tensile strength of 793 MPa and an average impact toughness at −40 °C of 56 J
Understanding Alcohol Use Discourse and Stigma Patterns in Perinatal Care on Twitter
(1) Background: perinatal alcohol use generates a variety of health risks. Social media platforms discuss fetal alcohol spectrum disorder (FASD) and other widespread outcomes, providing personalized user-generated content about the perceptions and behaviors related to alcohol use during pregnancy. Data collected from Twitter underscores various narrative structures and sentiments in tweets that reflect large-scale discourses and foster societal stigmas; (2) Methods: We extracted alcohol-related tweets from May 2019 to October 2021 using an official Twitter search API based on a set of keywords provided by our clinical team. Our exploratory study utilized thematic content analysis and inductive qualitative coding methods to analyze user content. Iterative line-by-line coding categorized dynamic descriptive themes from a random sample of 500 tweets; (3) Results: qualitative methods from content analysis revealed underlying patterns among inter-user engagements, outlining individual, interpersonal and population-level stigmas about perinatal alcohol use and negative sentiment towards drinking mothers. As a result, the overall silence surrounding personal experiences with alcohol use during pregnancy suggests an unwillingness and sense of reluctancy from pregnant adults to leverage the platform for support and assistance due to societal stigmas; (4) Conclusions: identifying these discursive factors will facilitate more effective public health programs that take into account specific challenges related to social media networks and develop prevention strategies to help Twitter users struggling with perinatal alcohol use
T-complex protein 1 subunit zeta-2 (CCT6B) deficiency induces murine teratospermia
Background The CCT complex is an important mediator of microtubule assembly and intracellular protein folding. Owing to its high expression in spermatids, CCT knockdown can disrupt spermatogenesis. In the present report, we therefore evaluated the in vivo functionality of the testis-specific CCT complex component CCT6B using a murine knockout model system. Methods A CRISPR/Cas9 approach was used to generate Cct6b−/− mice, after which candidate gene expression in these animals was evaluated via qPCR and Western blotting. Testicular and epididymal phenotypes were assessed through histological and immunofluorescent staining assays, while a computer-assisted sperm analyzer was employed to assess semen quality. Results Cct6b−/− mice were successfully generated, and exhibited no differences in development, fertility, appearance, testis weight, or sperm counts relative to control littermates. In addition, no differences in spermatogenesis were detected when comparingCct6b+/+ and Cct6b−/− testes. However, when progressive motility was analyzed, the ratio of normal sperm was significantly decreased in Cct6b−/− male mice, with nuclear base bending being the primary detected abnormality. In addition, slight decreases in Cct4 and Cct7 expression were detected. Conclusion These data indicated that CCT6B is an important regulator of murine spermatogenesis, with the loss of this protein resulting in CCT complex dysfunction, providing a foundation for further studies