45 research outputs found

    Impact of Pet Companionship on Student Development: A Meta-Analysis

    Get PDF
    Animal companionship has been found to have a positive influence on human well-being, and the presence of pets can have a subtle yet significant impact on the healthy development of students. Pet companionship takes various forms across different fields in China and other regions worldwide, and the impact of such companionship remains uncertain. Hence, it is imperative to investigate the impact of diverse forms of companionship and animals on multiple facets of student growth and development. This study employed meta-analysis methodologies to examine 47 effect sizes derived from 12 domestic and international studies on pet companionship. The aim was to investigate the overall trends of the influence of pet companionship on student development as well as the effects of diverse types of companionship and pets on different aspects of student development, including physical and mental health, social-emotional abilities, and academic performance. The objective was to enhance the exploration of approaches for maximizing the utilization of various forms of pet companionship. Furthermore, this research suggests a systematic and incremental approach to enhancing the function of pets within households, educational institutions, and medical facilities. Adequate content and organization are essential for scientific advancement and the development of students. In this particular context, it is possible to optimize the impact of pet companionship on the development of students

    Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material

    Get PDF
    Magnesium and magnesium alloys have great application potential in the field of orthopaedics. Compared with traditional inorganic nonmetallic materials and medical polymer materials, magnesium alloys have many advantages, such as better strength, toughness, fatigue resistance, and easy processing. Its mechanical properties are suitable and controllable. It can meet the same elastic modulus, cell compatibility, and biodegradability as human cortical bone. There are also some drawbacks for biodegradability, as magnesium and its alloys, with their high degradation rate, can cause insufficient integrity of the mechanical properties. This paper summarises the research on magnesium and its magnesium alloy materials in the field of bone implantation, looking at what magnesium and its magnesium alloys are, the history of magnesium alloys in bone implant materials, the manufacturing of magnesium alloys, the mechanical properties of magnesium alloys, the bio-compatibility and clinical applications of magnesium alloys, the shortcomings, and the progress of research in recent years

    Directional mechanical stability of Bacteriophage φ29 motor’s 3WJ-pRNA: Extraordinary robustness along portal axis

    Get PDF
    The molecular motor exploited by bacteriophage φ29 to pack DNA into its capsid is regarded as one of the most powerful mechanical devices present in viral, bacterial, and eukaryotic systems alike. Acting as a linker element, a prohead RNA (pRNA) effectively joins the connector and ATPase (adenosine triphosphatase) components of the φ29 motor. During DNA packing, this pRNA needs to withstand enormous strain along the capsid’s portal axis—how this remarkable stability is achieved remains to be elucidated. We investigate the mechanical properties of the φ29 motor’s three-way junction (3WJ)–pRNA using a combined steered molecular dynamics and atomic force spectroscopy approach. The 3WJ exhibits strong resistance to stretching along its coaxial helices, demonstrating its super structural robustness. This resistance disappears, however, when external forces are applied to the transverse directions. From a molecular standpoint, we demonstrate that this direction-dependent stability can be attributed to two Mg clamps that cooperate and generate mechanical resistance in the pRNA’s coaxial direction. Our results suggest that the asymmetric nature of the 3WJ’s mechanical stability is entwined with its biological function: Enhanced rigidity along the portal axis is likely essential to withstand the strain caused by DNA condensation, and flexibility in other directions should aid in the assembly of the pRNA and its association with other motor components

    Characterization of global research trends and prospects on platinum-resistant ovarian cancer: a bibliometric analysis

    Get PDF
    BackgroundIn the last decades, growing attention has been focused on identifying effective therapeutic strategies in the orphan clinical setting of women with platinum-resistant ovarian cancer (PROC), generating thousands of original articles. However, the literature involving bibliometric analysis of PROC has not been published yet.ObjectiveThis study hopes to gain a better understanding of the hot spots and trends in PROC by conducting a bibliometric analysis, as well as identify potential new research directions.MethodsWe searched the Web of Science Core Collection (WOSCC) for PROC-related articles published between 1990 and 2022. CiteSpace 6.1.R2 and VOS viewer 1.6.18.0 were primarily utilized to evaluate the contribution and co-occurrence relationships of various countries and regions, institutes, and journals and to identify research hotspots and promising future trends in this research field.ResultsA total of 3,462 Web of Science publications were retrieved that were published in 671 academic journals by 1135 authors from 844 organizations in 75 countries and regions. The United States was the leading contributor in this field, and the University of Texas MD Anderson Cancer Center was the most productive institution. Gynecologic Oncology was the most productive journal, while the Journal of Clinical Oncology was the most cited and influential. Co-citation cluster labels revealed the characteristics of seven major clusters, including synthetic lethality, salvage treatment, human ovarian-carcinoma cell line, PARP inhibitor resistance, antitumor complexes, folate receptor, and targeting platinum-resistant disease. Keywords and references burst detection indicated that biomarkers, genetic and phenotypic changes, immunotherapy, and targeted therapy were the most recent and most significant aspects of PROC research.ConclusionThis study conducted a comprehensive review of PROC research using bibliometric and visual techniques. Understanding the immunological landscape of PROC and identifying the population that can benefit from immunotherapy, especially in combination with other therapeutic options (such as chemotherapy and targeted therapy), will continue to be the focal point of research

    Predicting 1-, 3-, 5-, and 8-year all-cause mortality in a community-dwelling older adult cohort: relevance for predictive, preventive, and personalized medicine

    Get PDF
    Background: Population aging is a global public health issue involving increased prevalence of age-related diseases, and concomitant burden on medical resources and the economy. Ninety-two diseases have been identified as age-related, accounting for 51.3% of the global adult disease burden. The economic cost per capita for older people over 60 years is 10 times that of the younger population. From the aspects of predictive, preventive, and personalized medicine (PPPM), developing a risk-prediction model can help identify individuals at high risk for all-cause mortality and provide an opportunity for targeted prevention through personalized intervention at an early stage. However, there is still a lack of predictive models to help community-dwelling older adults do well in healthcare. Objectives: This study aims to develop an accurate 1-, 3-, 5-, and 8-year all-cause mortality risk-prediction model by using clinical multidimensional variables, and investigate risk factors for 1-, 3-, 5-, and 8-year all-cause mortality in community-dwelling older adults to guide primary prevention. Methods: This is a two-center cohort study. Inclusion criteria: (1) community-dwelling adult, (2) resided in the districts of Chaonan or Haojiang for more than 6 months in the past 12 months, and (3) completed a health examination. Exclusion criteria: (1) age less than 60 years, (2) more than 30 incomplete variables, (3) no signed informed consent. The primary outcome of the study was all-cause mortality obtained from face-to-face interviews, telephone interviews, and the medical death database from 2012 to 2021. Finally, we enrolled 5085 community-dwelling adults, 60 years and older, who underwent routine health screening in the Chaonan and Haojiang districts, southern China, from 2012 to 2021. Of them, 3091 participants from Chaonan were recruited as the primary training and internal validation study cohort, while 1994 participants from Haojiang were recruited as the external validation cohort. A total of 95 clinical multidimensional variables, including demographics, lifestyle behaviors, symptoms, medical history, family history, physical examination, laboratory tests, and electrocardiogram (ECG) data were collected to identify candidate risk factors and characteristics. Risk factors were identified using least absolute shrinkage and selection operator (LASSO) models and multivariable Cox proportional hazards regression analysis. A nomogram predictive model for 1-, 3-, 5- and 8-year all-cause mortality was constructed. The accuracy and calibration of the nomogram prediction model were assessed using the concordance index (C-index), integrated Brier score (IBS), receiver operating characteristic (ROC), and calibration curves. The clinical validity of the model was assessed using decision curve analysis (DCA). Results: Nine independent risk factors for 1-, 3-, 5-, and 8-year all-cause mortality were identified, including increased age, male, alcohol status, higher daily liquor consumption, history of cancer, elevated fasting glucose, lower hemoglobin, higher heart rate, and the occurrence of heart block. The acquisition of risk factor criteria is low cost, easily obtained, convenient for clinical application, and provides new insights and targets for the development of personalized prevention and interventions for high-risk individuals. The areas under the curve (AUC) of the nomogram model were 0.767, 0.776, and 0.806, and the C-indexes were 0.765, 0.775, and 0.797, in the training, internal validation, and external validation sets, respectively. The IBS was less than 0.25, which indicates good calibration. Calibration and decision curves showed that the predicted probabilities were in good agreement with the actual probabilities and had good clinical predictive value for PPPM. Conclusion: The personalized risk prediction model can identify individuals at high risk of all-cause mortality, help offer primary care to prevent all-cause mortality, and provide personalized medical treatment for these high-risk individuals from the PPPM perspective. Strict control of daily liquor consumption, lowering fasting glucose, raising hemoglobin, controlling heart rate, and treatment of heart block could be beneficial for improving survival in elderly populations

    Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment

    Get PDF
    Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant Ka was 1,639 M-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer

    Radiogenomic Analysis of Papillary Thyroid Carcinoma for Prediction of Cervical Lymph Node Metastasis: A Preliminary Study

    Get PDF
    Background Papillary thyroid carcinoma (PTC) is characterized by frequent metastases to cervical lymph nodes (CLNs), and the presence of lymph node metastasis at diagnosis has a significant impact on the surgical approach. Therefore, we established a radiomic signature to predict the CLN status of PTC patients using preoperative thyroid ultrasound, and investigated the association between the radiomic features and underlying molecular characteristics of PTC tumors. Methods In total, 270 patients were enrolled in this prospective study, and radiomic features were extracted according to multiple guidelines. A radiomic signature was built with selected features in the training cohort and validated in the validation cohort. The total protein extracted from tumor samples was analyzed with LC/MS and iTRAQ technology. Gene modules acquired by clustering were chosen for their diagnostic significance. A radiogenomic map linking radiomic features to gene modules was constructed with the Spearman correlation matrix. Genes in modules related to metastasis were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and a protein-protein interaction (PPI) network was built to identify the hub genes in the modules. Finally, the screened hub genes were validated by immunohistochemistry analysis. Results The radiomic signature showed good performance for predicting CLN status in training and validation cohorts, with area under curve of 0.873 and 0.831 respectively. A radiogenomic map was created with nine significant correlations between radiomic features and gene modules, and two of them had higher correlation coefficient. Among these, MEmeganta representing the upregulation of telomere maintenance via telomerase and cell-cell adhesion was correlated with 'Rectlike' and 'deviation ratio of tumor tissue and normal thyroid gland' which reflect the margin and the internal echogenicity of the tumor, respectively. MEblue capturing cell-cell adhesion and glycolysis was associated with feature 'minimum calcification area' which measures the punctate calcification. The hub genes of the two modules were identified by protein-protein interaction network. Immunohistochemistry validated that LAMC1 and THBS1 were differently expressed in metastatic and non-metastatic tissues (p=0.003; p=0.002). And LAMC1 was associated with feature 'Rectlike' and 'deviation ratio of tumor and normal thyroid gland' (p<0.001; p<0.001); THBS1 was correlated with 'minimum calcification area' (p<0.001). Conclusions The radiomic signature proposed here has the potential to noninvasively predict the CLN status in PTC patients. Merging imaging phenotypes with genomic data could allow noninvasive identification of the molecular properties of PTC tumors, which might support clinical decision making and personalized management

    Ingest : your garden.

    No full text
    To its most primal core, a food provides nourishment. However, I believe that recent perceptions of food are more than just for ‘filling up our stomachs’ - food also fuels us emotionally. It has taken on the role of a meaning maker. From how it is presented to how it is ‘directed’ to be consumed, food comes to represent certain notions when viewed through cultural contexts. This is especially so when meals are concerned, since it involved the preparation and presentation of food. A meal is also a focal point to gather and commune. Coupled with specific eating rituals, it evolves into a marker of identity that allows society to understand more about their culture. Food thus becomes a communication tool. This project aims to explore the usage of locally grown food (and meals) as a communication tool and an identity marker to raise awareness on Singapore’s culture. In doing so, we hope that it will encourage Singaporeans to explore and share their own national identities and take pride in their local culture by bonding together over an eating experience.Bachelor of Fine Art

    Numerical Simulation for the Pressure Distribution of the Compaction Roller in in-situ consolidation processes

    No full text
    Automated tape or fiber placement (ATP/AFP) with in-situ consolidation has been identified as a promising manufacturing technique for thermoplastic (TP) composites, which are highly in-demand in the aerospace industry for future aircraft structural applications. This manufacturing technique is attractive since it has the potential to eliminate the energy and time consuming autoclave consolidation. However, low quality is one of the biggest challenges in the application of in-situ consolidation. It seems that pressure contribution to the bond quality has received less attention than thermal one. Therefore, this work is initiated to simulate the pressure distribution between the compaction roller and the mandrel.The objective in this work is to predict the pressure distribution in the contact area between the rubber-covered roller and the mandrel in room temperature by finite element methods (FEM). Rubber material is characterized by mechanical testing and then modeled as hyperelastic material. 3rdd-order Ogden material model is found to well describe the strain- stress behavior of rubber material. The material constants are then implemented in FE models as an input. The pressure distribution is predicted by FE modes and the influence of compaction force, rubber thickness, pre-stretching force on the pressure distribution are discussed, followed by an optimization between compaction force and rubber thickness. Experiments are conducted to validate the FE models regarding the three influencing factors, that are: (a). compaction force, (b). with/without pre-stretching and (c). various rubber thickness. Rubber deformation can be captured by the digital image correlation (DIC) Pressure distribution is obtained from the Prescale pressure measurement film produced by Fujifilm®, which are the films that show different color densities under different pressures. Experimental results of strain and pressure distribution are compared with FEM results, followed by discussions and conclusions.It can be concluded that pre-stretching force should be used to avoid rubber-roller separation and prevent rubber from moving out to the sides. Both of the compaction force and rubber thickness affects the maximum pressure and contact length linearly. A trade- off between compaction force and rubber thickness can be made based on the force limit of the equipment and pressure requirements.Aerospace Engineerin

    Experimental and Computational Research on the Shear Performance of Partially Filled Narrow-Width Steel Box-UHPC-Combined Girders under Negative Moment Action

    No full text
    To examine the vertical shear behavior of narrow-width steel box-UHPC (Ultra-High Performance Concrete) composite beams with partial filling under negative bending moments, a total of six test beams were created and constructed in this study. The variables considered during the design and fabrication process included the flange thickness of UHPC, the amount of steel fibers in UHPC, and the height of the concrete filling. Reverse static concentration loading was applied to the beams. Compared to the C40 concrete flange, the cracking load of the 1/2 plate thickness UHPC flange and pure UHPC flange increased by 55.6% and 66.7%, respectively. The yield load witnessed a rise of 17.3% and 22.7%, while the ultimate load experienced an increase of 7% and 13.1%. This suggests that incorporating steel fibers can regulate the formation of cracks, enhance the flexibility of the flanges, and improve the overall shear capacity of the composite beams. When steel fibers were used in the amount of 2% of the concrete volume, the cracking resistance of the flange plate was increased by 16.7%. Partially filled and fully filled composite beams exhibited a 7.7% and 30.8% augmentation in cracking load, a 35.3% and 49.9% increase in yield load, and a 41% and 83.2% elevation in ultimate load when contrasted with composite beams devoid of concrete infusion within the steel box. The above observation implies that the incorporation of concrete within the steel box significantly improves the yield strength and ultimate shear capacity of the composite beams. The shear strength of the narrow-width steel box-UHPC composite beams, which are partially filled, shows a significant relationship with the experimental results when applying the principle of component superposition
    corecore