77 research outputs found

    Lipopolysaccharide-induced depression-like model in mice: meta-analysis and systematic evaluation

    Get PDF
    Depression is a complex and biologically heterogeneous disorder. Recent studies have shown that central nervous system (CNS) inflammation plays a key role in the development of depression. Lipopolysaccharide (LPS)-induced depression-like model in mice is commonly used to studying the mechanisms of inflammation-associated depression and the therapeutic effects of drugs. Numerous LPS-induced depression-like models in mice exist and differ widely in animal characteristics and methodological parameters. Here, we systematically reviewed studies on PubMed from January 2017 to July 2022 and performed cardinal of 170 studies and meta-analyses of 61 studies to support finding suitable animal models for future experimental studies on inflammation-associated depression. Mouse strains, LPS administration, and behavioral outcomes of these models have been assessed. In the meta-analysis, forced swimming test (FST) was used to evaluate the effect size of different mouse strains and LPS doses. The results revealed large effect sizes in ICR and Swiss mice, but less heterogeneity in C57BL/6 mice. For LPS intraperitoneal dose, the difference did not affect behavioral outcomes in C57BL/6 mice. However, in ICR mice, the most significant effect on behavioral outcomes was observed after the injection of 0.5 mg/kg LPS. Our results suggests that mice strains and LPS administration play a key role in the evaluation of behavioral outcomes in such models

    Floral response to the Late Triassic Carnian Pluvial Episode

    Get PDF
    The Late Triassic Carnian Pluvial Episode (CPE; ca. 234–232 Ma) was characterized by dramatic global temperature and humidity increases, which in many terrestrial settings was accompanied by changes from arid to humid vegetation types. This study reviews current evidence of terrestrial floral composition and distribution during the CPE and analyzes spatial and temporal variation with relation to potential environmental driving mechanisms. Available evidence suggests the CPE was a globally significant event that triggered significant increases in the abundance of ferns and hygrophytes in terrestrial floras and freshwater algae in fluvial and lacustrine settings. These changes ended a long interval of relatively arid terrestrial climatic conditions since the early Triassic and are linked temporally with eruptions of the oceanic plateau Wrangellia Large Igneous Province (LIP). The massive release of greenhouse gasses including isotopically light CO2 during 3–4 distinct pulses of Wrangellia volcanism appears to have been the main driver of CPE climate change. Each pulse enhanced global atmospheric circulation and the hydrological cycle and resulted in changes from arid to humid conditions that affected floral abundance and composition. Higher terrestrial primary productivity in humid phases facilitated increased burial of terrestrial organic carbon and led to the recommencement of peat accumulation, ending the coal gap that had persisted since the earliest Triassic times. Enhanced movement of carbon from the atmosphere through the biosphere into the geosphere may have counteracted the warming effects of Wrangellia volcanic greenhouse gas emissions and ultimately led to the return of a steady climate state that terminated the warm and humid conditions of the CPE

    Observation of the Anomalous Hall Effect in a Collinear Antiferromagnet

    Full text link
    Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment, which hinders the topological quantum states and limits data density in memory devices, or by a delicate noncollinear magnetic order with strong spin decoherence, both limiting their applicability. A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism in an anisotropic crystal environment. This new mechanism does not require magnetic dipolar or noncollinear fields. However, it has not been experimentally observed to date. Here we demonstrate this unconventional mechanism by measuring the AHE in an epilayer of a rutile collinear antiferromagnet RuO2_2. The observed anomalous Hall conductivity is large, exceeding 300 S/cm, and is in agreement with the Berry phase topological transport contribution. Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.Comment: 33 pages, 14 figures, 2 table

    A novel Pseudorabies virus vaccine developed using HDR-CRISPR/Cas9 induces strong humoral and cellular immune response in mice

    Get PDF
    Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control

    ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Report Generation Based on Multi-institution and Multi-system Data

    Full text link
    Radiology report generation, as a key step in medical image analysis, is critical to the quantitative analysis of clinically informed decision-making levels. However, complex and diverse radiology reports with cross-source heterogeneity pose a huge generalizability challenge to the current methods under massive data volume, mainly because the style and normativity of radiology reports are obviously distinctive among institutions, body regions inspected and radiologists. Recently, the advent of large language models (LLM) offers great potential for recognizing signs of health conditions. To resolve the above problem, we collaborate with the Second Xiangya Hospital in China and propose ChatRadio-Valuer based on the LLM, a tailored model for automatic radiology report generation that learns generalizable representations and provides a basis pattern for model adaptation in sophisticated analysts' cases. Specifically, ChatRadio-Valuer is trained based on the radiology reports from a single institution by means of supervised fine-tuning, and then adapted to disease diagnosis tasks for human multi-system evaluation (i.e., chest, abdomen, muscle-skeleton, head, and maxillofacial &\& neck) from six different institutions in clinical-level events. The clinical dataset utilized in this study encompasses a remarkable total of \textbf{332,673} observations. From the comprehensive results on engineering indicators, clinical efficacy and deployment cost metrics, it can be shown that ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al., in terms of the diseases diagnosis from radiology reports. ChatRadio-Valuer provides an effective avenue to boost model generalization performance and alleviate the annotation workload of experts to enable the promotion of clinical AI applications in radiology reports

    Publisher Correction: An anomalous Hall effect in altermagnetic ruthenium dioxide

    Get PDF
    In the version of this article initially published, square brackets and parentheses were incorrect in Fig. 1g and throughout Fig. 2 (excepting lower labels in Fig. 2d–f). Further, in the second paragraph of the “Consistency with theoretical prediction” subsection of the main article, in the text now reading “the reorientation-field scale, namely, HC = (H2 AE − H2 d) /Hd,” the term “H2 AE” wasn’t shown as squared. The changes have been made in the HTML and PDF versions of the article
    corecore