5 research outputs found

    Wide-Range Linear Iontronic Pressure Sensor with Two-Scale Random Microstructured Film for Underwater Detection

    No full text
    A broad linear range of ionic flexible sensors (IFSs) with high sensitivity is vital to guarantee accurate pressure acquisition and simplify back-end circuits. However, the issue that sensitivity gradually decreases as the applied pressure increases hinders the linearity over the whole working range and limits its wide-ranging application. Herein, we design a two-scale random microstructure ionic gel film with rich porosity and a rough surface. It increases the buffer space during compression, enabling the stress deformation to be more uniform, which makes sure that the sensitivity maintains steady as the pressure loading. In addition, we develop electrodes with multilayer graphene produced by a roll-to-roll process, utilizing its large interlayer spacing and ion-accessible surface area. It benefits the migration and diffusion of ions inside the electrolyte, which increases the unit area capacitance and sensitivity, respectively. The IFS shows ultra-high linearity and a linear range (correlation coefficient ∼ 0.9931) over 0–1 MPa, an excellent sensitivity (∼12.8 kPa–1), a fast response and relaxation time (∼20 and ∼30 ms, respectively), a low detection limit (∼2.5 Pa), and outstanding mechanical stability. This work offers an available path to achieve wide-range linear response, which has potential applications for attaching to soft robots, followed with sensing slight disturbances induced by ships or submersibles

    Wide-Range Linear Iontronic Pressure Sensor with Two-Scale Random Microstructured Film for Underwater Detection

    No full text
    A broad linear range of ionic flexible sensors (IFSs) with high sensitivity is vital to guarantee accurate pressure acquisition and simplify back-end circuits. However, the issue that sensitivity gradually decreases as the applied pressure increases hinders the linearity over the whole working range and limits its wide-ranging application. Herein, we design a two-scale random microstructure ionic gel film with rich porosity and a rough surface. It increases the buffer space during compression, enabling the stress deformation to be more uniform, which makes sure that the sensitivity maintains steady as the pressure loading. In addition, we develop electrodes with multilayer graphene produced by a roll-to-roll process, utilizing its large interlayer spacing and ion-accessible surface area. It benefits the migration and diffusion of ions inside the electrolyte, which increases the unit area capacitance and sensitivity, respectively. The IFS shows ultra-high linearity and a linear range (correlation coefficient ∼ 0.9931) over 0–1 MPa, an excellent sensitivity (∼12.8 kPa–1), a fast response and relaxation time (∼20 and ∼30 ms, respectively), a low detection limit (∼2.5 Pa), and outstanding mechanical stability. This work offers an available path to achieve wide-range linear response, which has potential applications for attaching to soft robots, followed with sensing slight disturbances induced by ships or submersibles

    Wide-Range Linear Iontronic Pressure Sensor with Two-Scale Random Microstructured Film for Underwater Detection

    No full text
    A broad linear range of ionic flexible sensors (IFSs) with high sensitivity is vital to guarantee accurate pressure acquisition and simplify back-end circuits. However, the issue that sensitivity gradually decreases as the applied pressure increases hinders the linearity over the whole working range and limits its wide-ranging application. Herein, we design a two-scale random microstructure ionic gel film with rich porosity and a rough surface. It increases the buffer space during compression, enabling the stress deformation to be more uniform, which makes sure that the sensitivity maintains steady as the pressure loading. In addition, we develop electrodes with multilayer graphene produced by a roll-to-roll process, utilizing its large interlayer spacing and ion-accessible surface area. It benefits the migration and diffusion of ions inside the electrolyte, which increases the unit area capacitance and sensitivity, respectively. The IFS shows ultra-high linearity and a linear range (correlation coefficient ∼ 0.9931) over 0–1 MPa, an excellent sensitivity (∼12.8 kPa–1), a fast response and relaxation time (∼20 and ∼30 ms, respectively), a low detection limit (∼2.5 Pa), and outstanding mechanical stability. This work offers an available path to achieve wide-range linear response, which has potential applications for attaching to soft robots, followed with sensing slight disturbances induced by ships or submersibles

    Strain-Mediated Coexistence of Volatile and Nonvolatile Converse Magnetoelectric Effects in Fe/Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.7</sub>Ti<sub>0.3</sub>O<sub>3</sub> Heterostructure

    No full text
    Strain-mediated ferromagnetic/ferroelectric (FE) heterostructures have played an important role in multiferroic materials to investigate the electric-field control of magnetism in the past decade, due to their excellent performances, such as room-temperature operation and large magnetoelectric (ME) coupling effect. Because of the different FE-switching-originated strain behaviors and varied interfacial coupling effect, both loop-like (nonvolatile) and butterfly-like (volatile) converse ME effects have been reported. Here, we investigate the electric-field control of magnetism in a multiferroic heterostructure composed of a polycrystalline Fe thin film and a Pb­(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.7</sub>Ti<sub>0.3</sub>O<sub>3</sub> single crystal, and the experimental results exhibit complex behaviors, suggesting the coexistence of volatile and nonvolatile converse ME effects. By separating the symmetrical and antisymmetrical parts of the electrical modulation of magnetization, we distinguished the loop-like hysteresis and butterfly-like magnetization changes tuned by electric fields, corresponding to the strain effects related to the FE 109° switching and 71/180° switching, respectively. Further magnetic-field-dependent as well as angular-dependent investigation of the converse ME effect confirmed the strain-mediated magnetism involving competition among the Zeeman energy, magnetocrystalline anisotropy energy, and strain-generated magnetoelastic energy. This study is helpful for understanding the electric-field control of magnetism in multiferroic heterostructures as well as its relevant applications

    Spatially Resolved Ferroelectric Domain-Switching-Controlled Magnetism in Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub>/Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.7</sub>Ti<sub>0.3</sub>O<sub>3</sub> Multiferroic Heterostructure

    No full text
    Intrinsic spatial inhomogeneity or phase separation in cuprates, manganites, etc., related to electronic and/or magnetic properties, has attracted much attention due to its significance in fundamental physics and applications. Here we use scanning Kerr microscopy and scanning electron microscopy with polarization analysis with in situ electric fields to reveal the existence of intrinsic spatial inhomogeneity of the magnetic response to an electric field on a mesoscale with the coexistence of looplike (nonvolatile) and butterfly-like (volatile) behaviors in Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub>/Pb­(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.7</sub>Ti<sub>0.3</sub>O<sub>3</sub> ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructures. Both the experimental results and micromagnetic simulations suggest that these two behaviors come from the 109° and the 71°/180° FE domain switching, respectively, which have a spatial distribution. This FE domain-switching-controlled magnetism is significant for understanding the nature of FM/FE coupling on the mesoscale and provides a path for designing magnetoelectric devices through domain engineering
    corecore